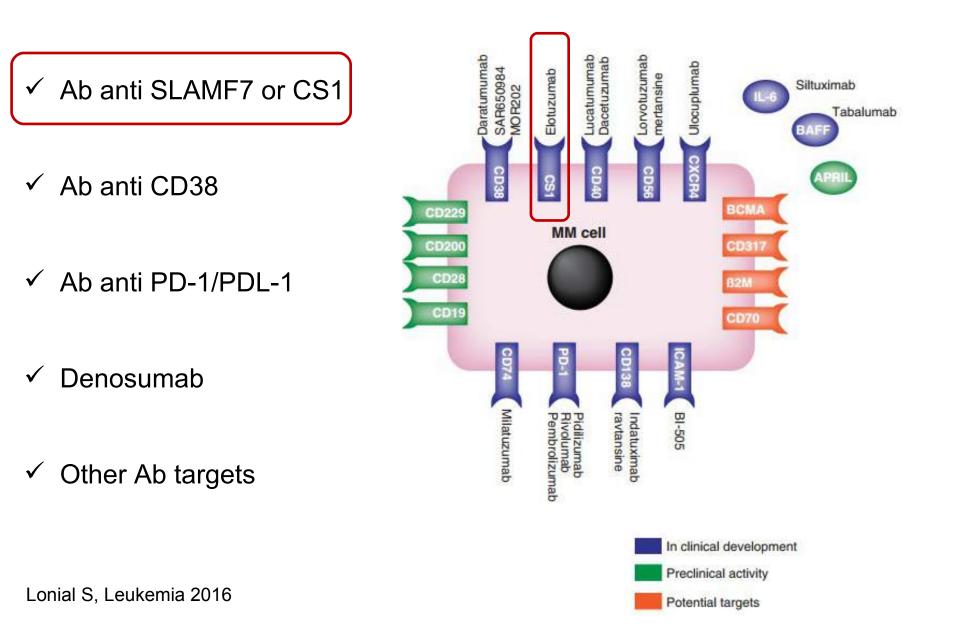
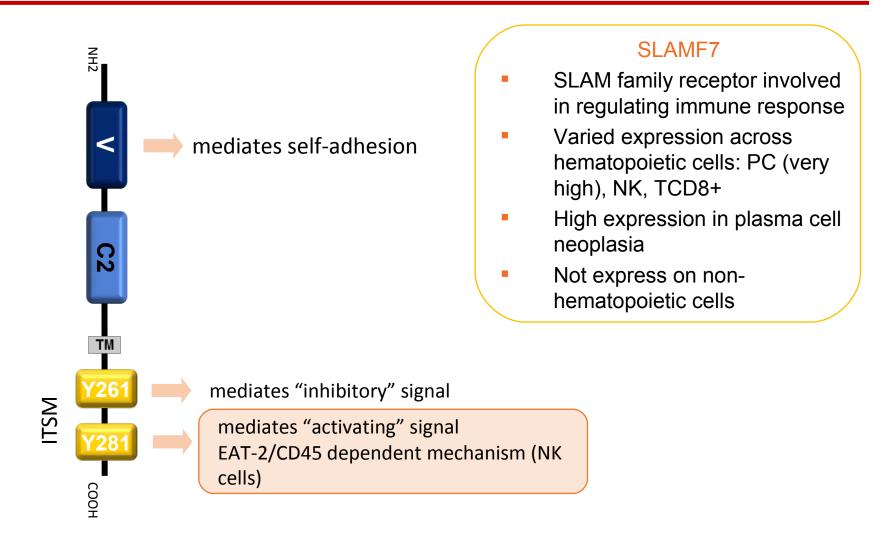

Anticorpi monoclonali nel trattamento del mieloma multiplo

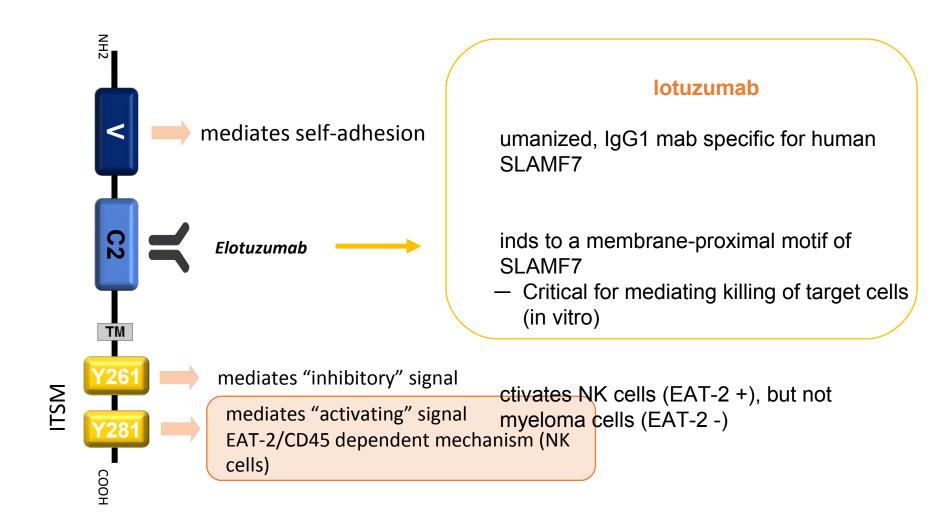
Lorenzo De Paoli, MD, PhD

Divisione di Ematologia Dipartimento di Medicina Traslazionale Università del Piemonte Orientale Amedeo Avogadro Novara

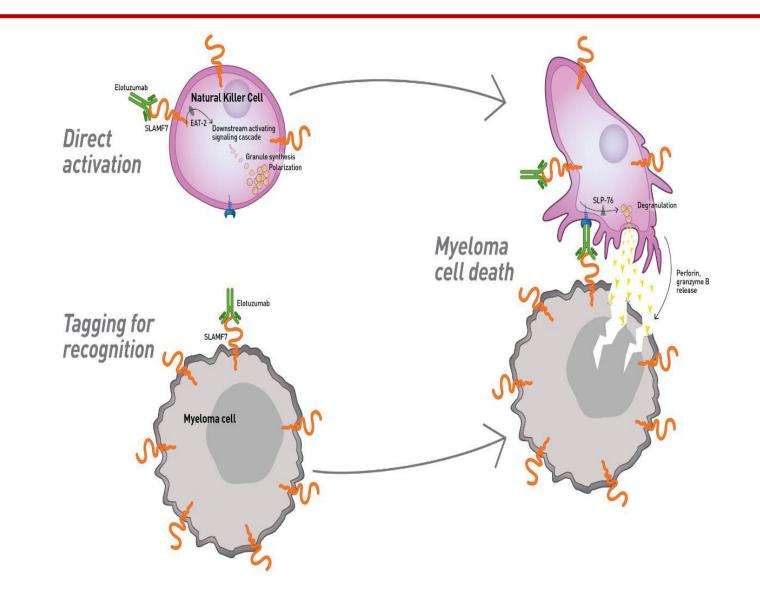
MM outcome and treatment options




- New kind of treatment with distinct mode of action (CHT, IMIDS, PIs) to improve outcome in incurable disease
- Emergent potential strategy based on the range of antigens highly expressed on the surface of MM cells
- ✓ Potential benefit
 - Target approach to treatment
 - Favorable tolerability profile in usual elderly population

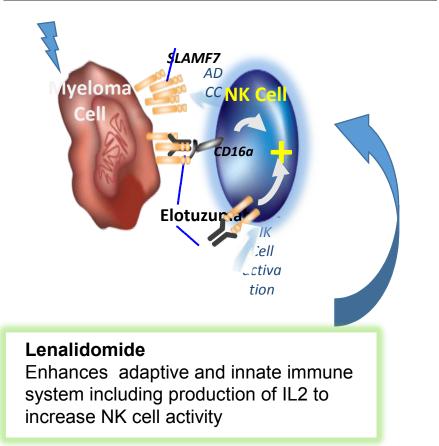

SLAMF7: receptor involved in regulating immune response, expressed in hematopoietic cells and MM cells

Veillette et al, Critical Reviews in Onc and Heme, 2013 Cruz-Munoz et al, Nature Immunology, 2009. Elotuzumab, a monoclonal Antibody targeting SLAMF7 that activates NK cells, but not MM cells

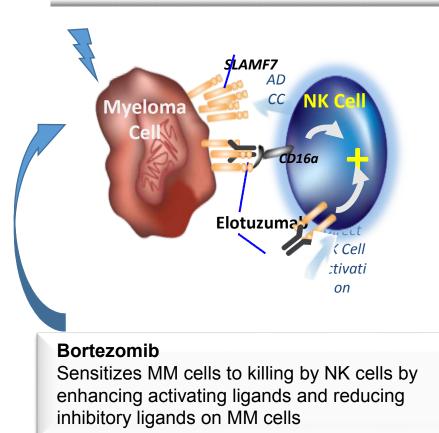


Veillette et al, Critical Reviews in Onc and Heme, 2013 Cruz-Munoz et al, Nature Immunology, 2009.

Elotuzumab activates NK cells and ADCC in order to cause myeloma cells death


Veillette et al, Critical Reviews in Onc and Heme, 2013 Cruz-Munoz et al, Nature Immunology, 2009.

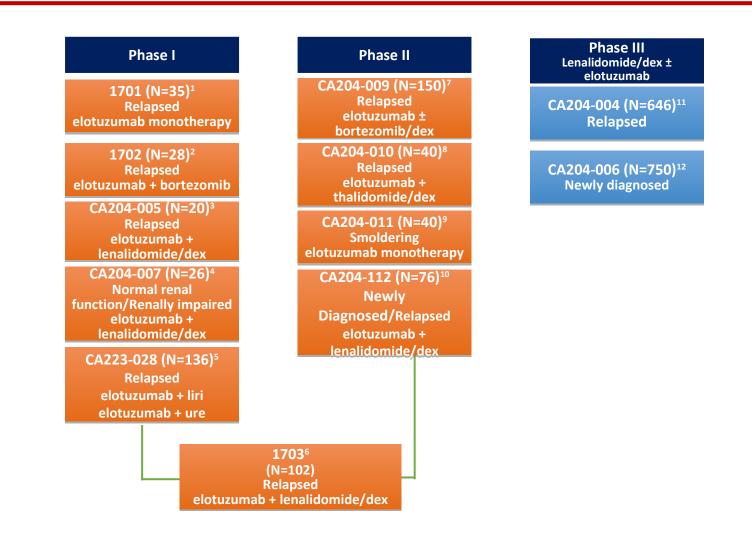
Elotuzumab synergizes with lenalidomide and bortezomib to enhance myeloma cell death


Lenalidomide

Induces myeloma cell injury and lowers threshold for NK cell-mediated killing of myeloma cells by elotuzumab

Bortezomib

Induces myeloma cell injury and lowers threshold for NK cell-mediated killing of myeloma cells by elotuzumab

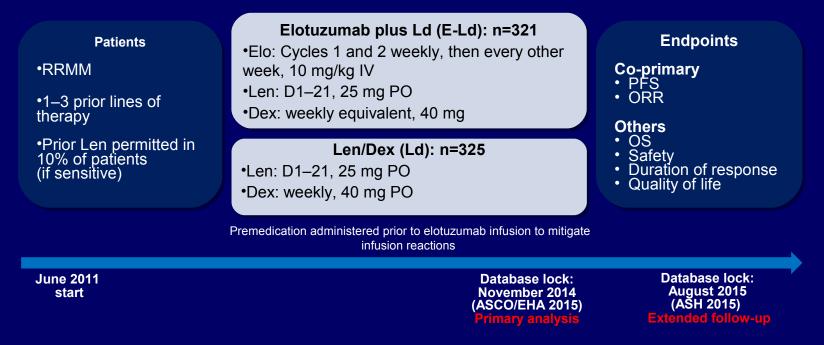


Balasa et al, Cancer Imm and Immunotherapeutics, 2015

Van Rhee et al (Molecular Cancer Therapeutics), 2009.

Elotuzumab Clinical Development Program

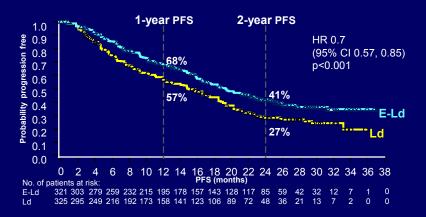
Clinicaltrials.gov. NCT00425347. 2. Clinicaltrials.gov. NCT00726869. 3. Clinicaltrials.gov. NCT01241292.
 Clinicaltrials.gov. NCT01393964. 5. Clinicaltrials.gov. NCT02252263. 6. Clinicaltrials.gov. NCT00742560.
 Clinicaltrials.gov. NCT01478048. 8. Clinicaltrials.gov. NCT01632150. 9. Clinicaltrials.gov. NCT01441973.
 Clinicaltrials.gov. NCT02159365. 11. Clinicaltrials.gov. NCT01239797. 12. Clinicaltrials.gov. NCT01335399.


Phase 1 and 2 elotuzumab Trials in RRMM

Author	Phase study	Combination	Numbe r of pts	Median n. of prior Th	Response rate % (≥ PR)	PFS (months)	
Zonder Blood 2012 (1701)	1	none	35	4.5	SD 26.5%	-	- NO EFFICACY
Jakuboviak JCO 2012 (1702)	1	BOR	28	2 (BOR refractory 2/3)	48	9.46	ORR in BOR combination with mild increase in
Jakuboviak ASCO pres 2015	2	BOR-DEX	77	≥ 2 in 29%	65	9.7	PFS (9.7 vs 6.9 mos)
Lonial JCO 2012 (1703)	1	LEN-DEX	28	3 (previous LEN 21%)	82	33	Good ORR and PFS in LEN
Richardson Lancet Hematol20 15 (1703)	2	LEN-DEX (ELO 10 mg vs 20 mg)	73	1-3	92 vs 76	33 vs 18.6	combination Reccommended dose: 10 mg

ELOQUENT-2: Study Design

• ELOQUENT-2 is an open-label, randomized, multicenter, phase 3 trial

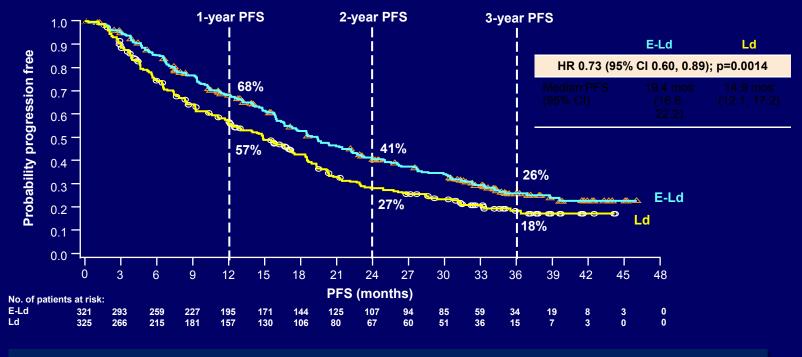


Statistical analysis

- Threshold for interim OS significance was 0.014 based on 295/427 events required for final analysis

ELOQUENT-2: Primary Analysis

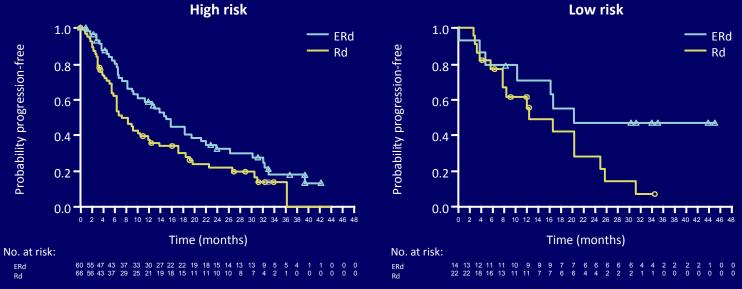
Co-primary endpoint: PFS


From N Engl J Med, Lonial S et al, Elotuzumab therapy for relapsed or refractory multiple myeloma, 373, 621–31. Copyright © 2015, Massachusetts Medical Society. Reprinted with permission

Subgroup	Elotuzumab	Control	Hazard Ratio	(95% CI)
	no. of events (tota	al no. of paties	ts)	
Age				
<65 yr	78 (134)	87 (142)	· • •	0.75 (0.55-1.02
≥65 yr	101 (187)	118 (183)		0.65 (0.50 0.85
Baseline \$7-microglobulin			1	
<3.5 mg/liter	82 (173)	107 (179)	⊢ •−1	0.61 (0.46-0.81
≥3.5 mg/liter	97 (147)	98 (146)		0.79 (0.60-1.05
ISS stage at enrollment				
4 70	68 (141)	80 (138)	· - ● -	0.63 (0.46-0.87
II.	60 (102)	67 (105)		0.86 (0.61-1.22
111	48 (66)	50 (68)	H • H	0.70 (0.47-1.04
Response to most recent line of	therapy			
Resistance	67 (113)	77 (114)		0.56 (0.40-0.78
Relapse	112 (207)	128 (211)	H-0-1	0.77 (0.60-1.00
No. of lines of previous therapy				
1	85 (151)	101 (159)		0.75 (0.56-1.00
2 or 3	94 (170)	104 (166)		0.65 (0.49-0.87
Previous IMID therapy	2.2.402.24	and server	1	
None	85 (155)	91 (151)		0.78 (0.58-1.05
Thalidomide only	85 (150)	101 (153)		0.64 (0.48-0.85
Other	9 (16)	13 (21)		0.59 (0.25-1.40
Previous bortezomib	- ()			0.0
Yes	132 (219)	150 (231)		0.68 (0.54-0.86
No	47 (102)	55 (94)	H	0.72 (0.49-1.07
Previous legalidomide	in front	22 1231		
Yes	9 (16)	13 (21)		0.59 (0.25-1.40
No	170 (305)	192 (304)		0.70 (0.57-0.87
Previous stem-cell transplantation		and from		
Yes	102 (167)	117 (185)	Le_i	0.75 (0.58-0.99
No	77 (154)	88 (140)		0.63 (0.46-0.86
Mutations	1. 122.11	00 (1 10)		
del(17p)	50 (102)	61 (104)		0.65 (0.45-0.94
1q21	88 (147)	105 (163)	· · · · · · · · · · · · · · · · · · ·	0.75 (0.56-0.99
1(4:14)	21 (30)	25 (31)		0.53 (0.29-0.95
Baseline creatinine clearance	11	[]		
c60 ml/min	53 (96)	55 (75)		0.56 (0.39-0.82
≥60 mI/min	126 (225)	150 (250)		0.74 (0.58-0.94
	100 (000)		0.25 0.50 0.80 1.25 2.0	Contraction of the second s

ELOQUENT-2 demonstrated clinical benefits of E-Ld compared with lenalidomide and dexamethasone (Ld) alone¹

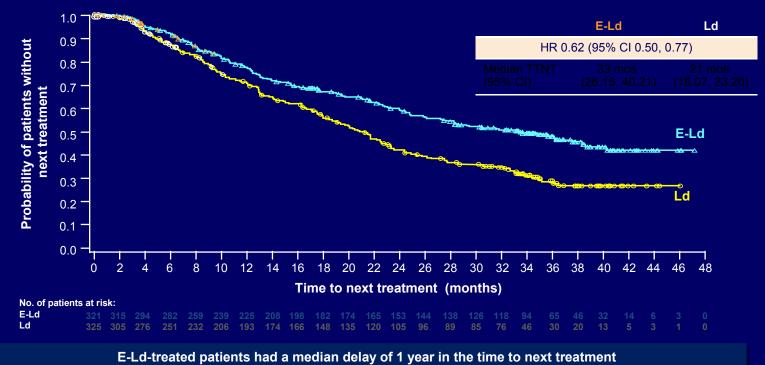
1. Lonial S et al. N Engl J Med 2015;373:621–31.


Extended Progression-Free Survival

PFS benefit with E-Ld was maintained over time (vs Ld):

- Overall 27% reduction in the risk of disease progression or death
- Relative improvement in PFS of 44% at 3 years

PFS by baseline risk status



Adapted from Lonial S et al. 2016.1

- High-risk patients had a 37% reduction in the risk of progression or death with ERd versus Rd (HR 0.63)
 Relative improvement in median PFS of 105% with ERd versus Rd
- The PFS benefit of ERd over Rd was also maintained regardless of whether patients had the high-risk cytogenetic abnormality del(17p) at baseline (HR 0.70)


ERd, elotuzumab, lenalidomide/dexamethasone; PFS, progression-free survival; Rd, lenalidomide/dexamethasone 1. Lonial S et al. Poster presentation at ASCO 2016. Abstract 8037.

Time to Next Treatment

vs Ld-treated patients

Interim Overall Survival

Prespecified interim analysis for overall survival indicates a strong trend (p=0.0257) with early separation sustained over time for E-Ld vs Ld

ELOQUENT-2: Elotuzumab-Ld vs Ld

Safety

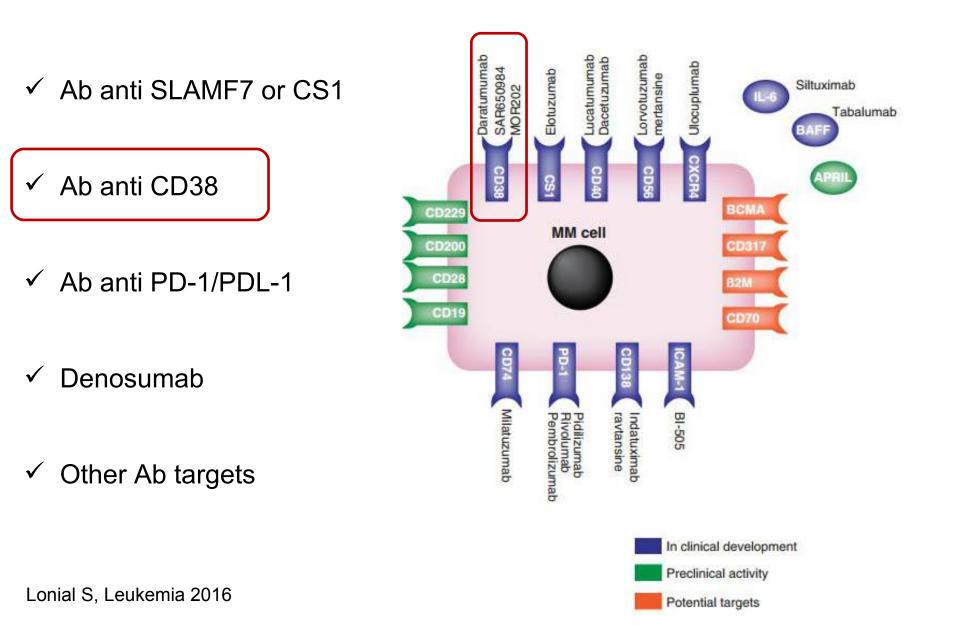
				25
Event	Elotuzumab Group (N=318)		(N=317)	
	Any Grade	Grade 3 to 4	Any Grade	Grade 3 to 4
Common hematologic toxic effect — no. (%)†				
Lymphocytopenia	316 (99)	244 (77)	311 (98)	154 (49)
Anemia	306 (96)	60 (19)	301 (95)	67 (21)
Thrombocytopenia	266 (84)	61 (19)	246 (78)	64 (20)
Neutropenia	260 (82)	107 (34)	281 (89)	138 (44)
Common nonhematologic adverse event — no. (%)				
General disorder				
Fatigue	149 (47)	27 (8)	123 (39)	26 (8)
Pyrexia	119 (37)	8 (3)	78 (25)	9 (3)
Peripheral edema	82 (26)	4 (1)	70 (22)	1 (<1)
Nasopharyngitis	78 (25)	0	61 (19)	0
Gastrointestinal disorder				
Diarrhea	149 (47)	16 (5)	114 (36)	13 (4)
Constipation	113 (36)	4 (1)	86 (27)	1 (<1)
Musculoskeletal or connective-tissue disorder				
Muscle spasms	95 (30)	1 (<1)	84 (26)	3 (1)
Back pain	90 (28)	16 (5)	89 (28)	14 (4)
Other disorder				018.01
Cough	100 (31)	1 (<1)	57 (18)	0
Insomnia	73 (23)	6 (2)	82 (26)	8 (3)

- No Grade 4–5 infusion reactions
- 33 patients (10%) infusion reaction , 29/33 grade 1-2
- 2 (1%) discontinued because of an infusion reaction

Ld: lenalidomide-dexamethasone

Lonial S et al N Engl J Med, 2015: 1-11

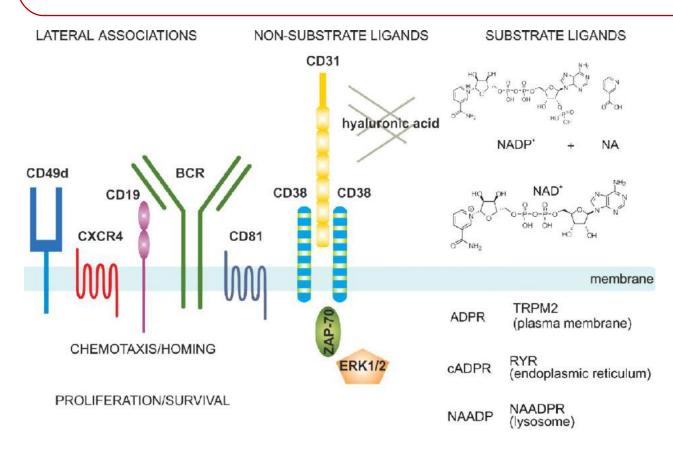
✓ Phase 1 study demonstrated no efficacy of Elotuzumab in monotherapy


✓ Phase 1 and 2 studies demonstrated significant anti-tumor activity of Elotuzumab in combination with Lenalidomide and bortezomib in R/R MM setting

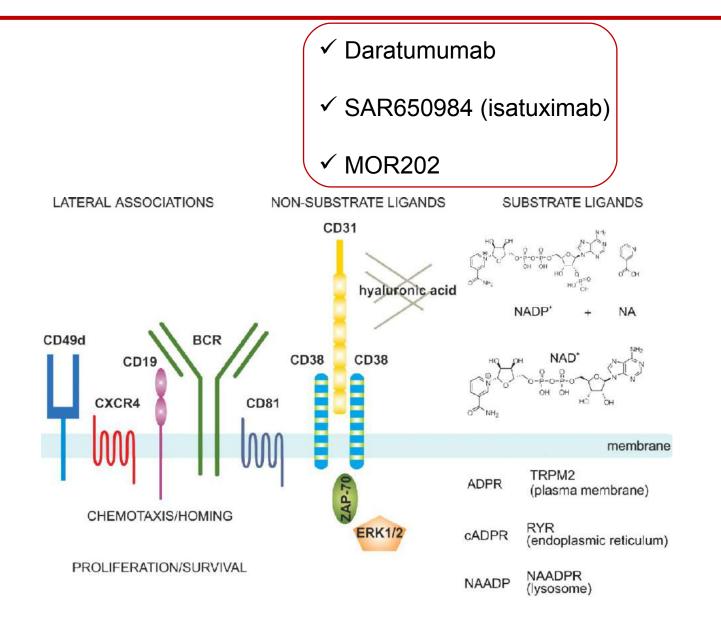
✓ In Phase 3 Elotuzumab in combination with lenalidomide and dexametasone demonstrates a durable and clinical relevant improvement in PFS and ORR in R/R MM

 Elotuzumab is well tolerated and principal AEs are related to infusion reactions: pre-medication regimen successfully mitigated infusion reactions

MM cells and its microenvironment: target molecules

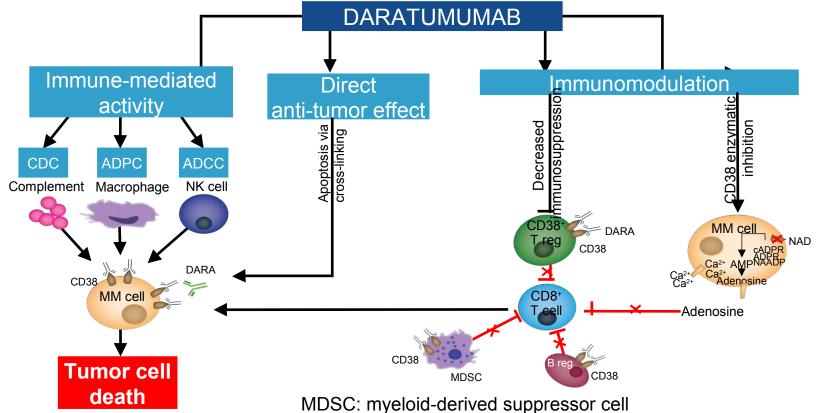


CD38


- Cell surface receptor close to BCR complex that regulates T cells activation/proliferation
- Ectoenzyme involved in calcium signaling
- Iow expression in hematopoietic cells (NK B and T cells) and non –hematopoietic cells
- High expression in MM cells

Malavasi F, et al. *Physiol Rev*. 2008; Lin P, et al. *Am J Clin Pathol*. 2004; Santonocito AM, et al. *Leuk Res*. 2004; Deaglio S, et al. *Leuk Res*. 2001

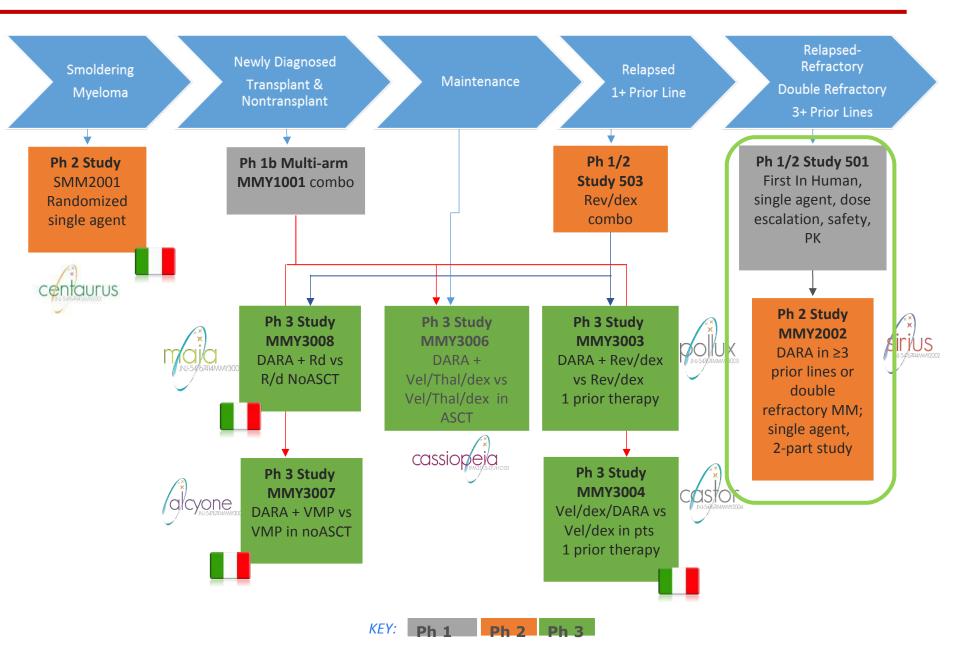
Anti CD38 mAbs in clinical development for MM



Malavasi F, et al. *Physiol Rev*. 2008; Lin P, et al. *Am J Clin Pathol*. 2004; Santonocito AM, et al. *Leuk Res*. 2004; Deaglio S, et al. *Leuk Res*. 2001

Daratumumab: IgG/K human moAb anti CD38 and mechanisms of action

- Complement-dependent cytotoxicity (CDC)
- Antibody-dependent cell-mediated phagocytosis (ADCP)
- Antibody-dependent cell-mediated cytotoxicity (ADCC)
- Induction of apoptosis
- Modulation of cellular enzymatic activities associated with calcium mobilization and signaling



Usmani, SZ et al. Presented at ASH 2015 (Abstract 29), oral presentation

Daratumumab development in all MM settings

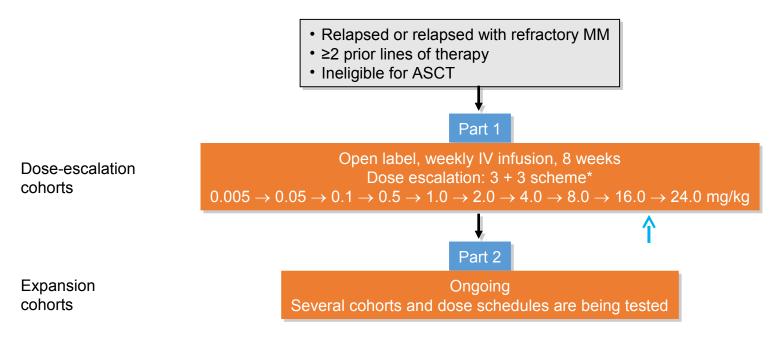
Daratumumab: phase 1 and 2 trials

Author	Phase study	Combinatio n	Numbe r of pts	Median n. of prior Th	Response rate % (≥ PR)	PFS (months)	
Lokhorst (501) NEJM 2015	1-2	None (arm 16 mg)	20	4	35	5.6	Single agent, ORR: ✓ dose-related;
Lonial SIRIUS trial Lancet 2016	2	None (16 mg)	106	5	29	3.7	✓also in R/R MM
Plesner (503) ASH pres 2015	2	LEN-DEX	45	2	91	-	Good ORR in combination with LEN
Mateos EHA pres 2015	1b	BORT-DEX	6	0	100	-	
Mateos EHA pres 2015	1b	BORT-MEL- PRED	8	0	100	-	ORR 100% in 1°line in combnation with
Mateos EHA pres 2015	1b	BORT-THAL- DEX	11	0	100	-	BOR
Mateos EHA pres 2015	1b	POM-DEX	24	<u>≥</u> 2	55	-	Good ORR in combination with POM in R/R MM

57th Annual Meeting & Exposition Orlando, FL • December 5-8, 2015

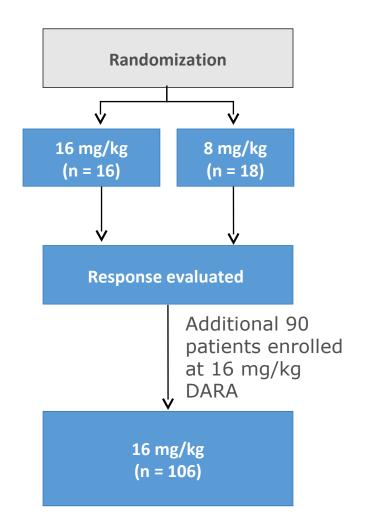
Oral #29

Clinical Efficacy of Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma


Pooled analysis Studies GEN501 and MMY2002 (Sirius)

Median follow-up: 14.8 months

Usmani et al Abs #29 Orlando, ASH 2015


Phase I/II Study Design

Lokhorst HM, et al NEJM 2015

- Open-label, international, multicenter study of Simon-2-stage design
- Initially, patients randomized 1:1 to receive DARA
 - ➢ 8 mg/kg Q4W or
 - 16 mg/kg every week (QW) for 8 weeks, Q2W for 16 weeks, then Q4W thereafter
- 16 mg/kg DARA was established as the recommended dose for further study
- Results are reported for all patients who were treated with 16 mg/kg DARA (n = 106)

- ✓ Median age of pts: 64y
- ✓ Median time since disgnosis: 5.1 y
- ✓ Median number of prior lines: 5
- ✓ Baseline refractory status: 91% last line; 86% both PI and IMID

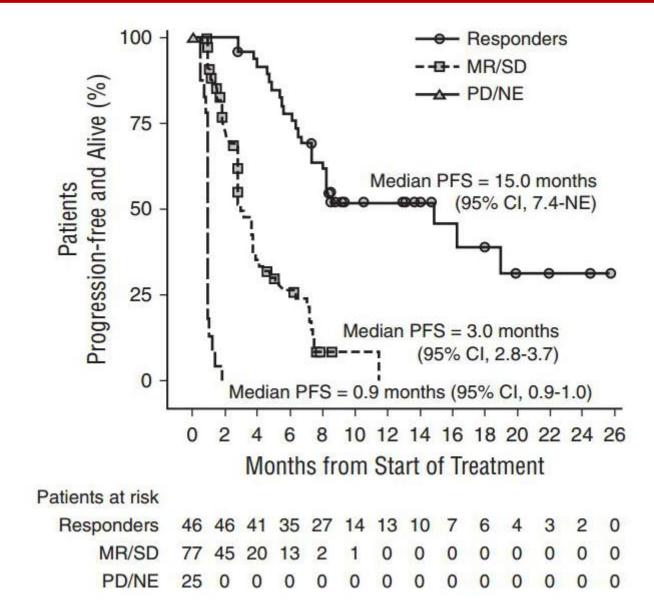
Schedule	Weeks			
Weekly	Weeks 1 to 8			
Every two weeks	Weeks 9 to 24			
Every four weeks	Week 25 onwards until disease progression			

	Dilution volume	Initial rate (first hour)	Rate increment	Maximum rate
First infusion	1000 mL	50 mL/hour	50 mL/hour every hour	200 mL/hour
Second infusion ^a	500 mL	50 mL/hour	50 mL/hour every hour	200 mL/hour
Subsequent infusions ^b	500 mL	100 mL/hour	50 mL/hour every hour	200 mL/hour

MMY2002 SIRIUS Duration of infusion (hr)	1 st Infusion n = 106	2 nd Infusion n = 104	Subsequent Infusions n = 103
Median	7.0	4.2	3.4
Range	1.5-14.3	2.7-8.5	1.1-6.7

Daratumumab efficacy: ORR in combined analysis

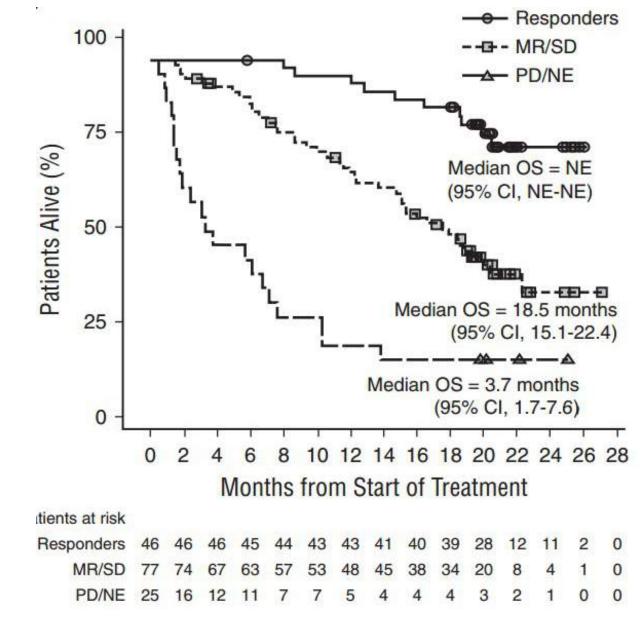
	16 mg/kg (N = 148)		35 -
	n (%)	95% CI	
ORR (sCR+CR+VGPR+PR)	46 (31)	23.7-39.2	30 -
Best response			25 -
sCR	3 (2)	0.4-5.8	
CR	2 (1)	0.2-4.8	- 20 -
VGPR	14(10)	5.3-15.4	ж. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PR	27 (18)	12.4-25.4	^{20 -} 20 - 20 - 15 -
MR	9 (6)	2.8-11.2	- 15 -
SD	68 (46)	37.7-54.3	
PD	18 (12)	7.4-18.5	10 -
NE	7 (5)	1.9-9.5	
VGPR or better (sCR+CR+VGPR)	19 (13)	7.9-19.3	5 -
CR or better (sCR+CR)	5 (3)	1.1-7.7	0 1


• ORR = 31%

• ORR was consistent in subgroups including age, ISS, number of prior lines of therapy, refractory status, or renal function

Usmani S, et al. Oral presentation: ASH 2015; Abstract 29

Daratumumab efficacy: median PFS (4 months) and in specific subgroups



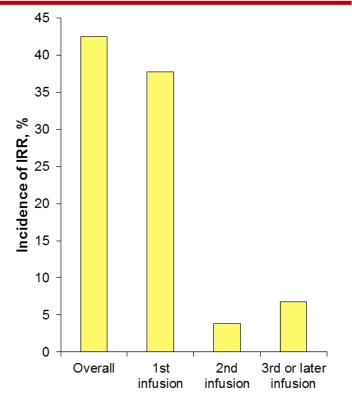
Usmani S, et al, Blood 2016

Daratumumab efficacy: median OS (20 months) and in specific subgroups

Usmani S, et al, Blood 2016

TEAE, n (%)	Any grade N = 148	Grade ≥3 N = 148
Fatigue	61 (41)	3 (2)
Nausea	42 (28)	0
Anemia	41 (28)	26(18)
Back pain	36 (24)	3 (2)
Cough	33 (22)	0
Neutropenia	30 (20)	15 (10)
Thrombocytopenia	30 (20)	21(14)
Upper respiratory tract infection	30 (20)	1 (<1)

- AEs were consistent with the individual GEN501 and SIRIUS studies; no new safety signals were identified
- 48% of patients had infusional reactions: 46%, 4%, and 3% occurred during the first, second, and subsequent infusions, respectively


Usmani S, et al. Oral presentation: ASH 2015; Abstract 29

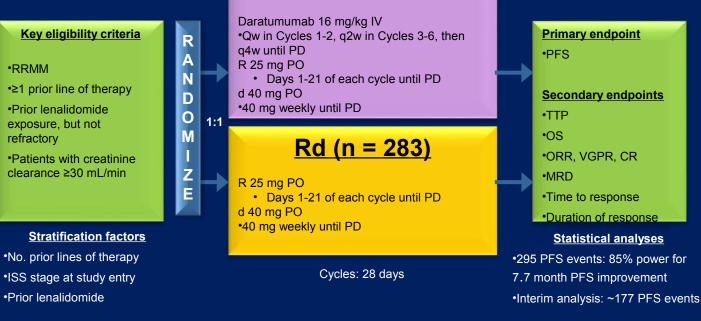
Special consideration in management in daratumumab: Infusional reactions

- Predominantly Grade 1 or 2 (Grade 3: 5%; no Grade 4)
- >90% of IRRs occurred during the first infusion
- 7% of patients had an IRR at >1 infusion
- Most common IRRs included nasal congestion (12%); throat irritation (7%); cough, dyspnea, chills, and vomiting (6% each)
- No patients discontinued treatment due to IRRs

Pre-medication to reduce the risk of IRRs:

✓ intravenous corticosteroid (methylprednisolone 100 mg or an equivalent)

- ✓ oral antipyretic (paracetamol at 650-1000 mg)
- ✓ oral or intravenous antihistamine (diphenhydramide 25-50 mg or equivalent)

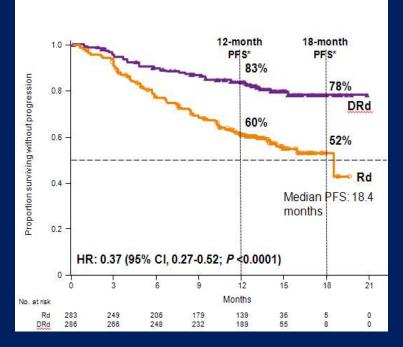

Post-medication corticosteroids on 1st and 2nd day after all infusions

Lonial S, et al. Oral presentation, ASCO 2015; Protocol for: Lokhorst et al. N Engl J Med 2015

POLLUX: Study Design

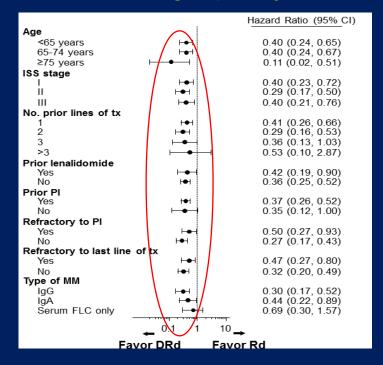
Multicenter, randomized (1:1), open-label, active-controlled phase 3 study

<u>DRd (n = 286)</u>


Pre-medication for the DRd treatment group consisted of dexamethasone 20 mg^a, paracetamol, and an antihistamine

^aOn daratumumab dosing days, dexamethasone was administered 20 mg premed on Day 1 and 20 mg on Day 2; RRMM, relapsed or refractory multiple myeloma; ISS, international staging system; R, lenalidomide; DRd, daratumumab/lenalidomide/dexamethasone; IV, intravenous; qw, once weekly; q2w, every 2 weeks; q4w, every 4 weeks; PD, progressive disease; PO, oral; d, dexamethasone; Rd, lenalidomide/dexamethasone; TTP, time to progression; MRD, minimal-residual disease.

Dimopoulus et al. EHA 2016

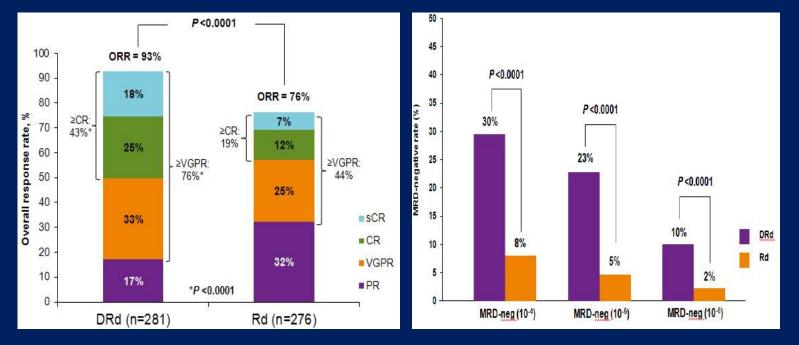

POLLUX: Study Design

Progression-free Survival (PFS)

63% reduction in the risk of disease progression or death for DRd vs Rd

PFS: Subgroup analysis

Higher efficacy was observed for DRd versus Rd across all subgroups

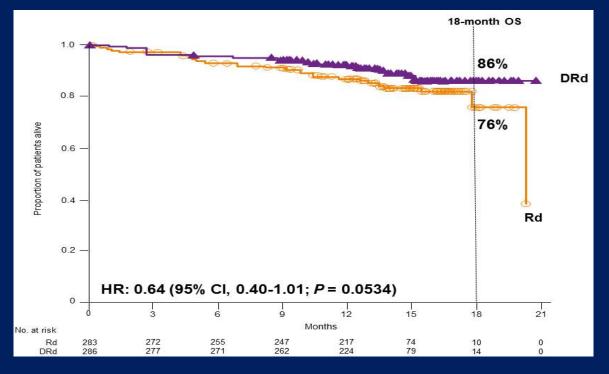

DRd: Daratumumab lenalidomide dexamethasone; Rd: lenalidomide dexamethasone

Dimopoulus et al. EHA 2016

POLLUX: Study Design

Overall response rate

MRD negative rate



Median duration of response: Not reached for DRd vs 17.4 months for Rd Significantly higher MRD-negative rates for DRd vs Rd

 Median time to response: 1.0 month for DRd vs 1.3 months for Rd

DRd: Daratumumab lenalidomide dexamethasone; Rd: lenalidomide dexamethasone

Overall Survival

18-month overall survival: 86% in DRd versus 76% in Rd

DRd: Daratumumab lenalidomide dexamethasone; Rd: lenalidomide dexamethasone

Dimopoulus M et al. EHA 2016

Adverse Events (AEs)

Infusion-related Reactions (IRRs)

IRRs ≥2%	Safety Analysis Set (n = 283)		
	All grades (%)	Grade 3 (%)	
Patients with IRRs	48	5	
Cough	9	0	
Dyspnea	9	0.7	
Vomiting	6	0.4	
Nausea	5	0	
Chills	5	0.4	
Bronchospasm	5	0.4	
Pruritus	3	0.4	
Throat irritation	3	0	
Headache	3	0	
Nasal congestion	3	0	
Wheezing	2	0.7	
Laryngeal edema	2	0.4	
Rhinorrhea	2	0	
Pyrexia	2	0	

o grade 4 or 5 IRRs were reported

2% of all IRRs occurred during the first infusion

DRd: Daratumumab lenalidomide dexamethasone; Rd: lenalidomide dexamethasonetient discontinued daratumumab due to an IRR

Most common AEs

	DRd (n	= 283)	Rd (n = 281)		
Hemat AEs	All-grade (%) ≥25%	Grade 3/4 (%) ≥5%	All-grade (%) ≥25%	Grade 3/4 (%) ≥5%	
Neutropenia Febrile neutropenia	59 6	52 6	43 3	37 3	
Anemia	31	12	35	20	
Thrombocytopenia	27	13	27	14	
Lymphopenia	6	5	5	4	
Non-hemat AEs					
Diarrhea	43	5	25	3	
Fatigue	35	6	28	3	
Upper resp. tract infection	32	1	21	1	
Constipation	29	1	25	0.7	
Cough	29	0	13	0	
Muscle spasms	26	0.7	19	2	
Pneumonia	14	8	13	8	

Infections and infestations:

Grade 3 or 4: 28% patients in DRd vs 23% patients in Rd

The most common grade 3 or 4 infections/infestations AE was pneumonia (8% vs 8%)

Dimopoulus et al. EHA 2016

Lenalidomide-based Studies

	POLLUX DRd vs Rd⁵	ASPIRE KRd vs Rd¹	ELOQUENT-2 ERd vs Rd ^{2,3}	TOURMALINE-MM1 NRd vs Rd⁴
PFS HR (95% CI)	0.37 (0.27-0.52)	0.69 (0.57-0.83)	0.73 (0.60-0.89)	0.74 (0.59-0.94)
ORR	93%	87%	79%	78%
≥VGPR	76%	70%	33%	48%
≥CR	43%	32%	4%	14%
Duration of response, mo	NE	28.6	20.7	20.5
OS HR (95% CI)	0.64 (0.40-1.01)	0.79 (0.63-0.99)	0.77 (0.61-0.97)	NE

K, carfilzomib; E, elotuzumab; N, ixazomib.

DRd: Daratumumab lenalidomide dexamethasone; Rd: lenalidomide dexamethasone

Stewart AK, et al. N Engl J Med. 2015;372(2):142-152.
 Lonial S, et al. N Engl J Med. 2015;373(7):621-631.
 Dimopoulos MA, et al. Blood. 2015;126(23):Abstract 28.
 Moreau P, et al. N Engl J Med. 2016;374(17):1621-1634.
 Dimopoulus EHA 2016

Phase I Dara + Pom-Dex (MMY-1001)

Eligibility criteria

Refractory to last line of therapy
≥2 prior lines of therapy, including 2 consecutive cycles of lenalidomide and bortezomib

Pomalidomide naïve

•ECOG score ≤2

Absolute neutrophil count
≥1.0×10⁹/L, and platelet count
≥75×10⁹/L for patients with <50% plasma cells (>50×10⁹/L, otherwise)
Calculated creatinine clearance ≥45 mL/min/1.73 m²

Open-label, multicenter, six-arm, Phase 1b study (28-day cycles) DARA* IV 16 mg/kg + Pomalidomide 4 mg (Days 1-21) + Dexamethasone 40 mg QW

*QW for Cycles 1-2, Q2W for Cycles 3-6, and Q4W beyond.

Treat 6 patients with DARA + POM-D If ≤1 patient has DLTs Enroll 6 additional patients Expand up to 88 patients

Dara-Pom-Dex: Daratumumab pomalidomide dexamethasone

Chari A, ASH 2015 Abst 508

Safety Dara + Pom-Dex (MMY-1001)

Treatment-emergent adverse events in >20% pts

	N = 98					
	Any grade	Grade ≥3				
Any grade	97	91				
Neutropenia	63	60				
Anemia	42	25				
Fatigue	41	8				
Thrombocytopenia	34	15				
Leukopenia	32	20				
Cough	31	0				
Diarrhea	30	1				
Dyspnea	28	6				
Nausea	25	0				
Constipation	22	0				

- Rates of grade ≥3 AEs were similar to those observed with POM-D alone
- Serious AEs occurred in 42% of patients
- 17 (17%) deaths occurred
- No new safety signals were identified

Dara-Pom-Dex: Daratumumab pomalidomide dexamethasone

Infusion-related Reactions (IRR) in >3 pts

	N = 98				
	Any grade	Grade 3			
Any event	52 (53)	6 (6)			
Chills	14 (14)	0			
Cough	11 (11)	0			
Dyspnea	11 (11)	0			
Nasal congestion	7 (7)	0			
Throat irritation	7 (7)	0			
Nausea	7 (7)	0			
Chest discomfort	6 (6)	0			
Pyrexia	6 (6)	0			

- IRRs were predominantly grade ≤2
 - 6 (6%) patients had grade 3 IRRs
 - Only 2 patients discontinued due to an IRR
- 53%, 1%, and 0% of patients had IRRs during the 1st, 2nd, and subsequent inf., respectively
- IRRs were managed with premedication and reduced infusion rates

Chari A, ASH 2015 Abst 508

ORR to Dara + Pom-Dex (MMY-1001)

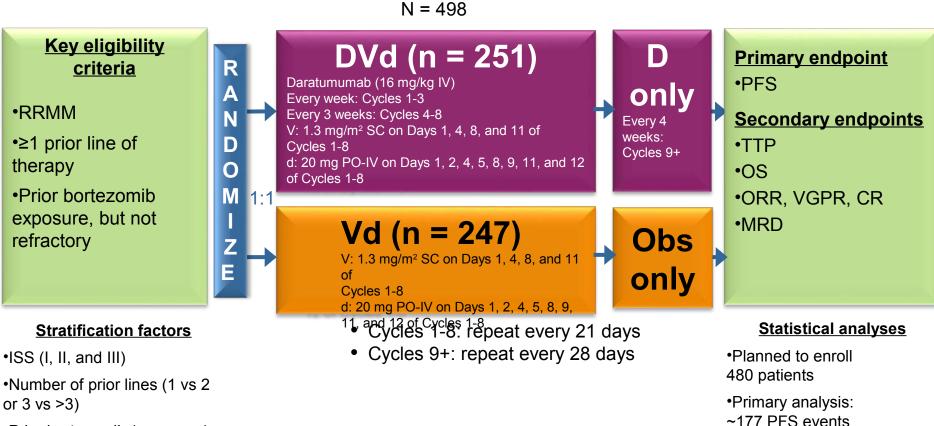
		DARA + POM-D (N = 75)			ORR = 71%
	n (%)	95% CI	70 -	9% CR or	5%
Overall response rate (sCR+CR+VGPR+PR)	53 (71)	59.0-80.6	60 -	better	4%
Best response sCR CR VGPR PR	4 (5) 3 (4) 25 (33) 21 (28)	1.5-13.1 0.8-11.2 22.9-45.2 18.2-39.6	- 50 - 2 40 - 0 30 -		33%
MR SD PD	2 (3) 17 (23) 3 (4)	0.3-9.3 13.8-33.8 0.8-11.2	20 -		200/
VGPR or better (sCR+CR+VGPR)	32 (43)	31.3-54.6	10 -		28%
CR or better (sCR+CR)	7 (9)	3.8-18.3	0 -		16 mg/kg

■ PR ■ VGPR

N = 75

- ORR = 71%
- ORR in double-refractory patients = 67%
- Clinical benefit rate (ORR + minimal response) = 73%

Dara-Pom-Dex: Daratumumab pomalidomide dexamethasone


Chari A, ASH 2015 Abst 508

43% VGPR or better

Phase 3 study: Dara + Bor dex

Multicenter, randomized, open-label, active-controlled, phase 3 study

•Prior bortezomib (no vs yes)

Premedication for the DVd treatment group consisted of dexamethasone 20 mg, acetaminophen, and an antihistamine

DVd, daratumumab, bortezomib and dexamethasone; IV, intravenous; V, bortezomib; SC, subcutaneously; d, dexamethasone; PO, orally; VD, bortezomib and dexamethasone; D, daratumumab; Obs, observation; PFS, progression-free survival; TTP, time to progression; OS, overall survival; ORR, overall response rate; VGPR, very good partial response; CR, complete response; MRD, minimal residual disease; ISS, International Staging System.

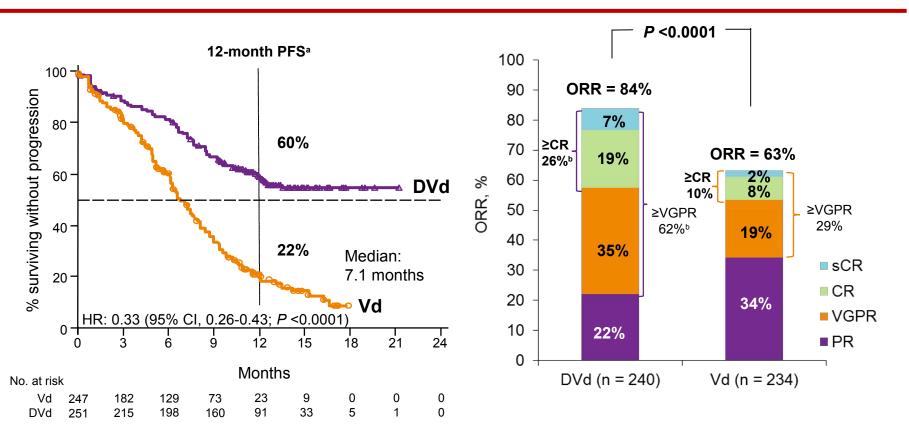
Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

Janssen Concology

Characteristic	DVd (n = 251)	Vd (n = 247)	Characteristic	DVd (n = 251)	Vd (n = 247)
Age, y Median (range) ≥75, n (%)	64 (30-88) 23 (9)	64 (33-85) 35 (14)	Prior lines of therapy, n (%) Median	2 (1-9)	2 (1-10)
ISS staging, n (%)ª I II III	98 (39) 94 (38) 59 (24)	96 (39) 100 (41) 51 (21)	1 2 3 >3 1-3°	122 (49) 70 (28) 37 (15) 22 (9) 229 (91)	113 (46) 74 (30) 32 (13) 28 (11) 219 (89)
Creatinine clearance mL/min), n (%)			Prior ASCT, n (%)	229 (91) 156 (62)	219 (89) 149 (60)
N	243	233	Prior PI, n (%)	169 (67)	172 (70)
>30-60 >60	49 (20) 186 (77)	59 (25) 163 (70)	Prior IMiD, n (%)	179 (71)	198 (80)
ledian time from	3.87	3.72	Prior PI + IMiD, n (%)	112 (45)	129 (52)
liagnosis, y (range)	(0.7-20.7)	(0.6-18.6)	Refractory to IMiD only,	74 (20)	00 (26)
Cytogenetic profile, n (%) ^b	107	196	n (%) Refractory to last line of	74 (30)	90 (36)
N Standard risk	167 123 (74)	186 135 (73)	therapy, n (%)	76 (30)	85 (34)
High risk	44 (26)	51 (27)			

ASCT, autologous stem cell transplantation; PI, proteasome inhibitor; IMiD, immunomodulatory drug.

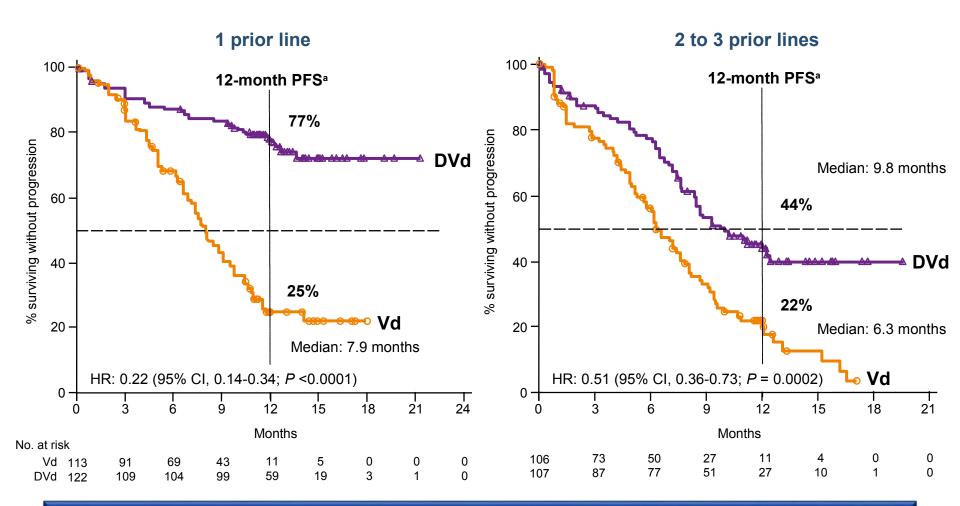
alSS staging is derived based on the combination of serum β 2-microglobulin and albumin.


^bCentralized analysis using next-generation sequencing. Patients with high risk had t(4;14), t(14;16), or del17p abnormalities. ^cExploratory.

Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

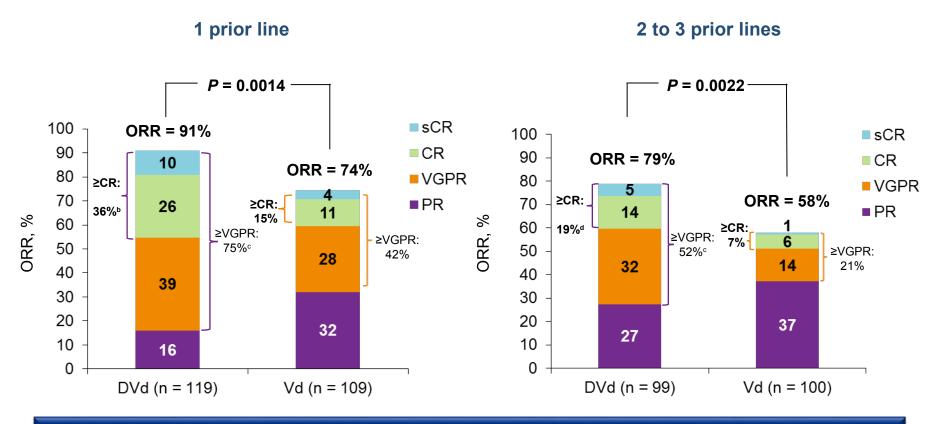
ORR and PFS

- Median (range) follow-up: 13.0 (0-21.3) months
- An additional 7% of patients receiving DVd achieved ≥CR with longer follow up


Responses continue to deepen in the DVd group with longer follow-up

ITT, intent to treat. Note: PFS: ITT population; ORR: response-evaluable population. ^aKaplan-Meier estimate. ^bP <0.0001 for DVd versus Vd. Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

PFS:Prior Lines of treatment


DVd is superior to Vd regardless of prior lines of therapy, with greatest benefit observed in 1 prior line

^aKaplan-Meier estimate

Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

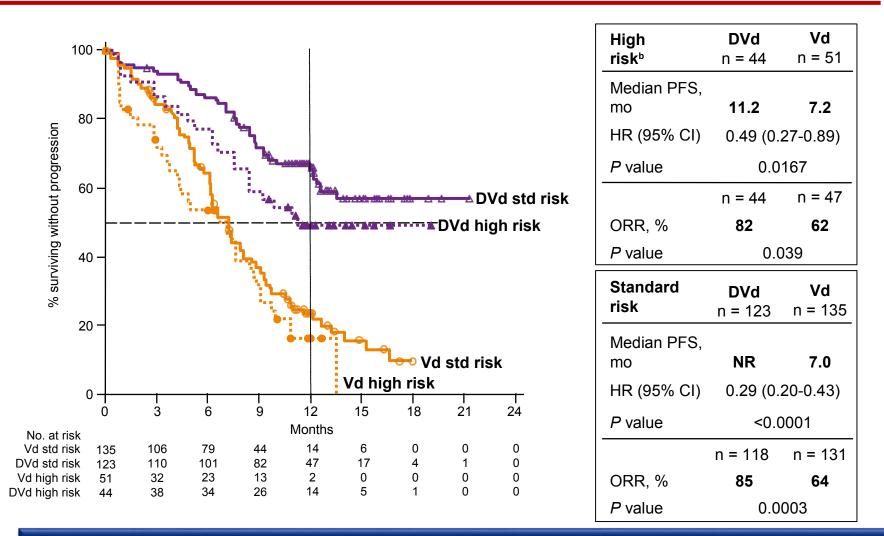
Janssen Concology

More patients achieve a deeper response with DVd after 1 prior line of treatment

^aResponse-evaluable population.

 ${}^{b}P = 0.0006$ for DVd vs Vd.

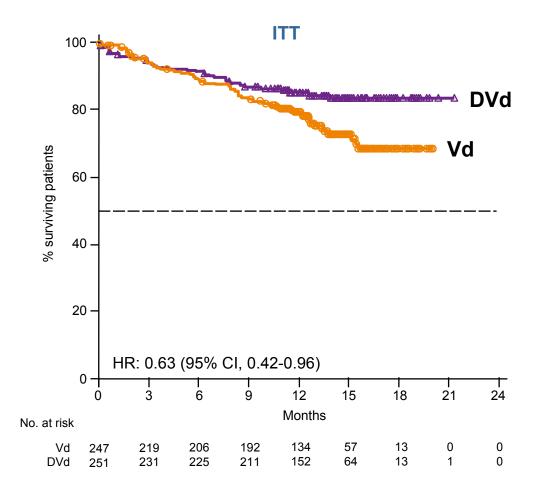
^c*P* <0.0001 for DVd vs Vd.


 $^{d}P = 0.0133$ for DVd vs Vd.

Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

PFS: Cytogenetic Risk in all evaluable patients

DVd improves outcomes regardless of cytogenetic risk


NR, not reached.

^aITT/Biomarker risk-evaluable analysis set.

^bCentral next-generation sequencing. High-risk patients had any of t(4;14), t(14;16), or del17p. Standard-risk patients had an absence of high-risk abnormalities. Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

- OS events
 - 37 (15%) in DVd
 - 58 (24%) in Vd
- OS HR for DVd versus Vd by prior lines:
 - 1 prior line = HR: 0.42 (95%
 CI, 0.19-0.93)
 - 1-3 prior line = HR: 0.54

(95% CI, 0.34-0.84)

Curves are beginning to separate, but OS data are immature

Median OS was not reached; results did not cross the prespecified stopping boundary. Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

	DVd (n = 243)		Vd (n	= 237)
Hematologic, n (%)	All-grade ≥25%ª	Grade 3/4 ≥5%ª	All-grade ≥25%ª	Grade 3/4 ≥5%ª
Thrombocytopenia	145 (60)	110 (45)	105 (44)	78 (33)
Anemia	67 (28)	36 (15)	75 (32)	38 (16)
Neutropenia	45 (19)	32 (13)	23 (10)	11 (5)
Lymphopenia	32 (13)	24 (10)	9 (4)	6 (3)
Nonhematologic, n (%)				
Peripheral sensory neuropathy	120 (49)	11 (5)	90 (38)	16 (7)
Diarrhea	83 (34)	9 (4)	53 (22)	3 (1)
Upper respiratory tract infection	72 (30)	6 (3)	43 (18)	1 (0.4)
Cough	66 (27)	0	30 (13)	0
Fatigue	53 (22)	12 (5)	58 (25)	8 (3)
Pneumonia	33 (14)	22 (9)	28 (12)	23 (10)
Hypertension	22 (9)	16 (7)	8 (3)	2 (0.8)

• Grade 3/4 TEAEs: 79% of DVd patients versus 63% of Vd patients

Discontinuations due to TEAEs: 9% of DVd patients versus 9% of Vd patients^b

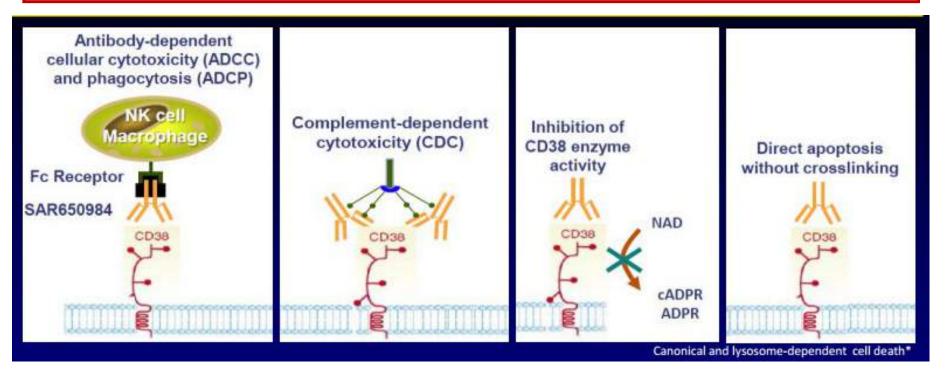
No new IRRs; incidence remains stable with longer follow up (45%)

TEAE, treatment-emergent adverse event; IRR, infusion-related reaction.

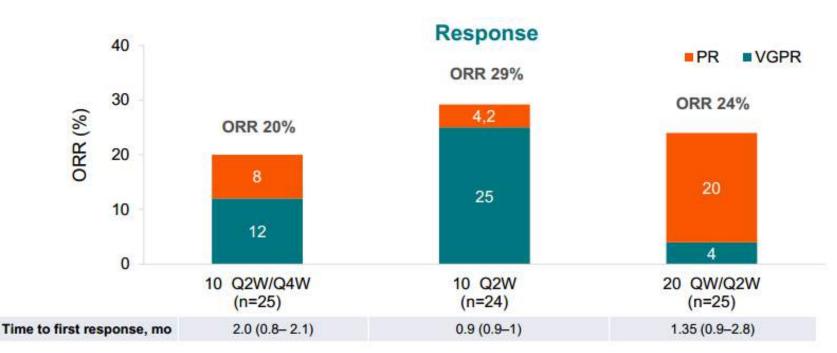
^aCommon TEAEs listed are either ≥25% all grade OR ≥5% grade 3/4. ^bVd arm treated for 8 cycles and DVd arm treated until progressive disease, per protocol. Mateos M-V, et al. Oral presentation at: 58th American Society of Hematology (ASH) Annual Meeting and Exposition; December 3-6 2016; San Diego, CA, USA.

	Daratumumab DVd vs Vd	Carfilzomib Kd vs Vd¹	Panobinostat PVd vs Vd ^{2,3}	Elotuzumab EVd vs Vd⁴
PFS HR (95% CI)	0.39 (0.28-0.53)	0.53 (0.44-0.65) 0.63 (0.52-0.76)	0.72 (0.59-0.88)
PFS, median mo	NE	18.7	12.0	9.7
≥VGPR	59%	54%	28%	36%
≥CR	19%	13%	11%	4%
Duration of response, mo	NE	21.3	13.1	11.4
OS HR (95% CI)	0.77 (0.47, 1.26)	0.79 (0.58-1.08) 0.94 (0.78-1.14)	0.61 (0.32-1.15)

Dimopoulos MA, et al. *Lancet Oncol*.
 2016;17(1):27-38.
 San-Miguel JF, et al. *Lancet Oncol*.
 2014;15(11):1195-1206.
 San-Miguel JF, et al. *Blood*.
 2015;126(23):Abstract 3026.
 Jakubowiak A, et al. *Blood*. 2016. Epub ahead of print.


Palumbo, A. Oral Presentation EHA 2016

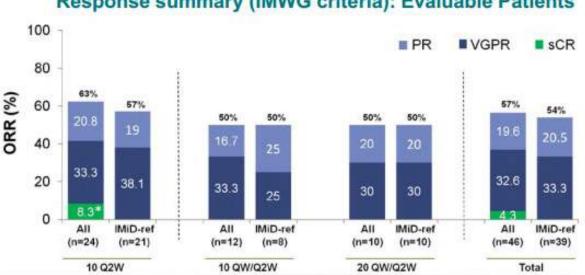
- As a single agent, DARA induced rapid, deep, and durable responses in a heavily pretreated/highly refractory population
- DARA conferred an OS benefit not only in responder patients, but also in patients who achieved SD or MR
- ✓ Updated analysis of the combined dataset of GEN501 and SIRIUS did not identify any new safety signals (infusional reactions)
- DARA has immune-mediated and immunomodulatory mechanisms that may be contributing to a survival benefit in combination with other drugs (IMIDs and PI)



- ✓ ADCC was observed in all the CD38+ lines tested
- ✓ CDC activity was dependent on receptor density
- ✓ Crosslinking –independent apoptosis
- ✓ Inhibition of the CD38 ectoenzimes activity
- → Synergistic and/or additive effect in combination with Len, Bor, Car and Mel in animal models

Vij et al, J Clin Oncol 2016; Deckert et al, Clin cancer Res 214; Martin et al ASH 2014; Jiang et al Leukemia 2016

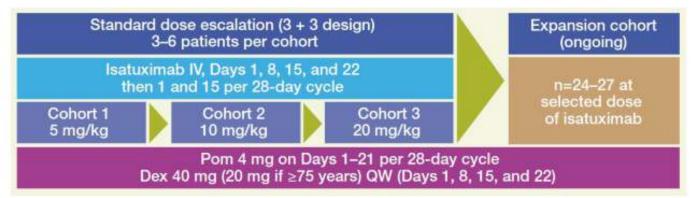
- IRRs occurred in 55% of patients receiving ≥10 mg/kg; Grade ≥3 in 2 patients (3%), both leading to discontinuation (10 mg/kg Q2W)
- Majority of IRRs occurred with first infusion; No IRRs after the 4th infusion


RRMM patients double refractory to PI and IMiDs or have received ≥3 prior lines of therapy

Vij R, et al. Presented at EHA 2016 (Abstract P274), poster presentation.

Phase 1b study: Isatuximab + Len dex in RRMM

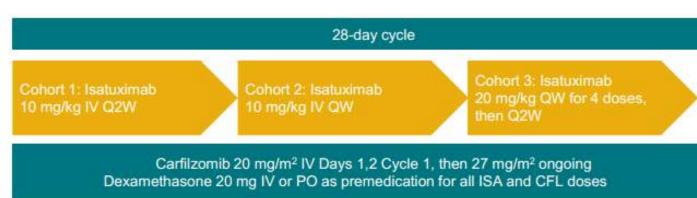
- 3 + 3 dose escalation + expansion 0 study
- RRMM + ≥2 prior regimens + len-exposed (for QW/Q2W cohorts)
- Median 4-6 prior lines of therapy in • the 3 expansion cohorts; 85% IMiD refractory
- Median duration of response was ٠ 7.6 months
- Isatuximab 10 mg/kg QW/Q2W has ٠ been selected for further study in global phase 3 study


Data cut-off Feb 10, 2016. Responses confirmed at subsequent assessment, IMiD-ref. IMiD compound refractory; ORR, overall response rate; PR, partial response VGPR, very good partial response; sCR, stringent complete response. "Of patients with sCR, 1 patient had 1 prior line of therapy, and the other patient 2 lines of prior STARCHTRA .

Vij, R et al. ASCO 2016 (Abstract 8009); oral presentation.

Response summary (IMWG criteria): Evaluable Patients

- 3 + 3 dose escalation + expansion study
- Adults with RRMM and ≥2 prior therapies including lenalidomide and a PI


- Patients: n=20 in dose-escalation phase
 - Median (range) prior lines: 4.5 (3-11); 75% of patients refractory to IMiD
- Response data (n=14):
 - ORR 64%: 1 patient with CR, 4 with VGPR, and 4 with PR
 - Median (range) duration of response: 19.71 (8-45) weeks
- No new safety signals
- MTD not reached; Isatuximab 10 mg/kg selected for expansion cohort
- Phase III study of isatuximab plus Pom/Dex was planned to start in 2016

Interim analysis results. Data cut-off: August 15, 2016

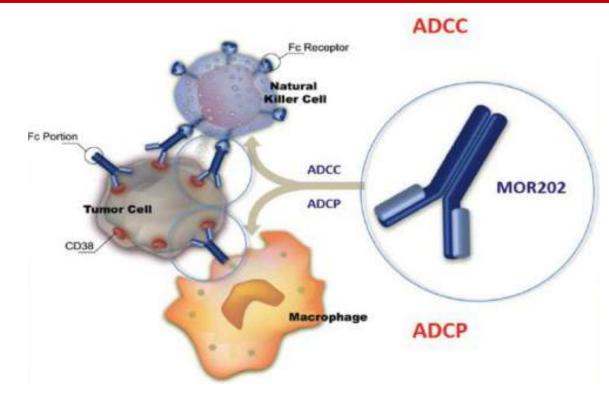
Richardson, P et al. Presented at ASH 2016 (Abstract 2123), poster presentation.

- 3 + 3 dose escalation
 + expansion study
- Adults with RRMM and 2 prior therapies including an IMiD and PI (prior carfilzomib allowed even if refractory)

- Patients: N=12
 - Median (range) prior lines: 3.5 (2-8); 75% refractory to IMiD and PI; 65% refractory to carfilzomib
- Response data (n=12):
 - ORR 66.7%: 2 with VGPR, 6 with PR, and 2 with MR
- No new safety signals
- MTD not reached; 21 patients to be enrolled into expansion phase

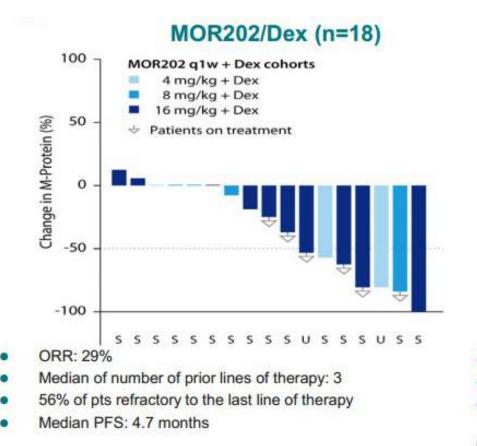
Interim analysis results. Data cut-off: November 20, 2016

Martin, T et al. Presented at ASH 2016 (Abstract 2111), poster presentation

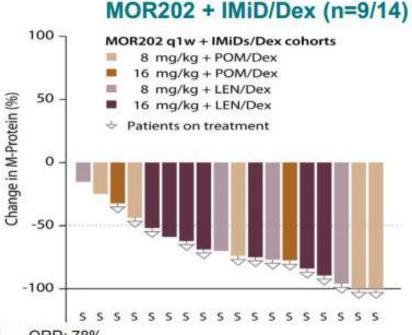


✓ ADCC

✓ ADCP (phagocytosis)


 \rightarrow Synergistic effect in combination with Len and POM and additive with Bor

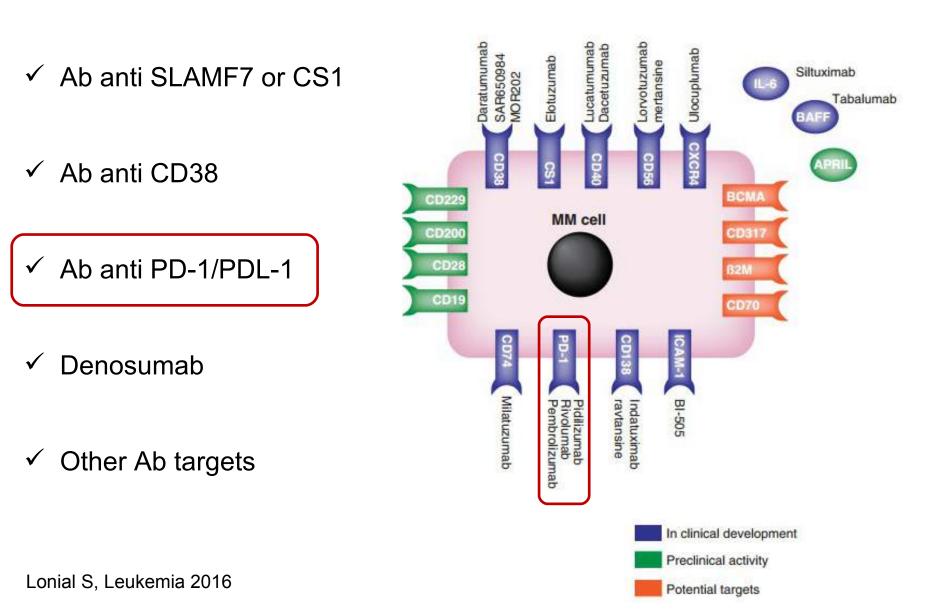
- Len and Pom showed to increase CD38 expression, and thus enhance the cytotoxic effects of MOR202 in cell lines.
- Both IMIDs induce activation of immune effector cells
- Reductions in bone lysis in combination with Len, Bor or Pom in animal models



Raab et al, ASCO 2015

Good tolerability. 7% of IRRs (grade 2)

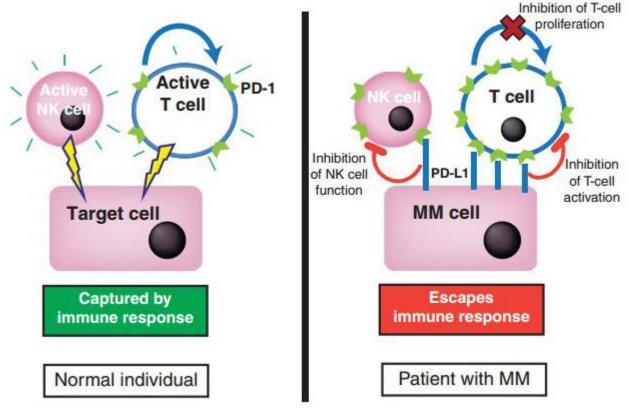
ORR: 78%


Median of number of prior lines of therapy: 3/2

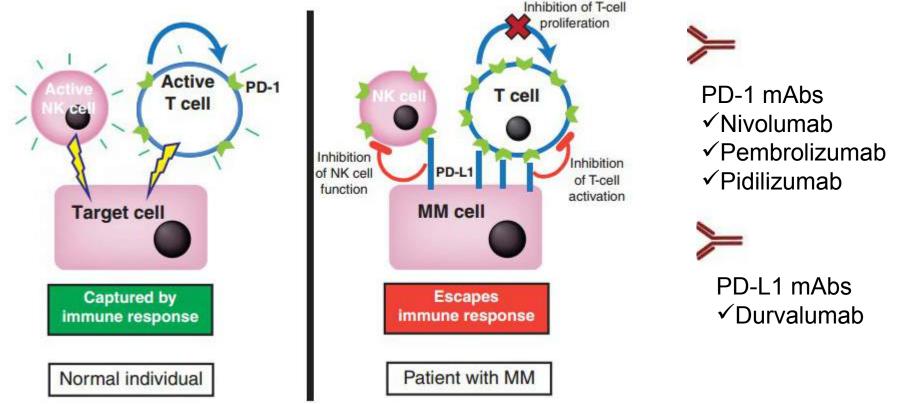
 100% of pts refractory to the last line of therapy for Pom-dex arm (n=9) and 50% for len-dex arm

Median PFS: NR

Raab, MS et al. ASH 2016 (Abstract 1152), oral presentation



PD-1 and PD-L1


- ✓ PD-1 is expressed on T and B surface and inhibits T-cell activation and proliferation through interaction with PD-L1 expressed on APC
- ✓ PD-1/PD-L1 signaling is dysregulated in MM patients:indeed PD-L1 expressed on MM cells provides an escape of immune through inhibition of NK and T cells activation

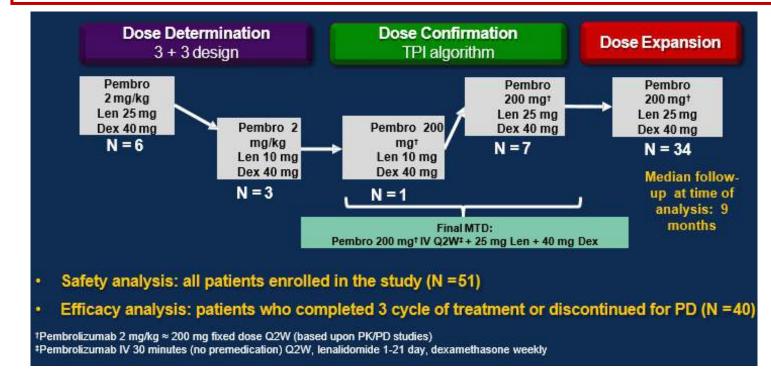
Topalian SL, Curr Opin Immunol 2012; Chen DS, Clin Cancer Res 2012

PD-1, PD-L1 and mAbs

- ✓ PD-1 is expressed on T and B surface and inhibits T-cell activation and proliferation through interaction with PD-L1 expressed on APC
- ✓ PD-1/PD-L1 signaling is dysregulated in MM patients:indeed PD-L1 expressed on MM cells provides an escape of immune through inhibition of NK and T cells activation

Topalian SL, Curr Opin Immunol 2012; Chen DS, Clin Cancer Res 2012

PD-1, PD-L1 and mAbs



Author	Phase study	Combination	Number of pts	Median n. of prior Th	Response rate % (≥ PR)	PFS (month s)	
Lesokhin, 2016 J Clin Oncol (nivolumab)	1b	NIVOLUMAB alone	27	78% <u>≥</u> 3	63% SD, 4% CR	-	Modest clinical activity as single agent
SanMiguel, 2015 Blood (pembrolizumab)	1	PEMBROLIZUMAB LEN-DEX	50	3	76% (76% LEN refractory)	Short follow- up	Good ORR in combination
Badros, 2015 Blood (pembrolizumab)	2	PEMBROLIZUMAB POM-DEX	17	3	60% (96% LEN refractory)	Short follow- up	with IMIDs in R/R MM (also in LEN refractory group)

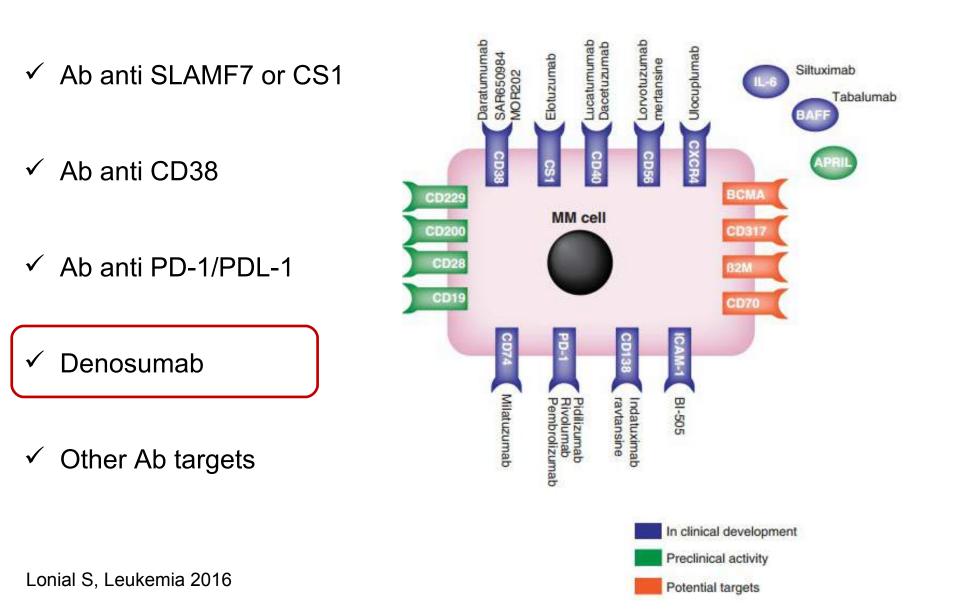
Phase 1 study: Pem + Len dex in RRMM

- ✓ 51 RRMM pts, failure of ≥2 prior therapies including PI and IMIDs
- ✓ median age 61, prior lines: 4
- ✓ Refractoriness: 78% to last line, 75% to Len, 63% to Bor

- ✓ In dose determination stage, 3/6 pts treated with Pem 2 mg/kg + Len 25 mg + Dex had DLTs (1 pt TLS G3, hyperuricemia G4, neutropenia G4; 1 pt neutropenia G3, 1pt pneumonia G3)
- All pts recovered from the DLTs without treatment discontinuation
- In dose confirmation stage, 7 additional pts were treated with pembro 200 mg + Len 25 mg + Dex with no DLTs observed

Mateos et al, ASCO 2016

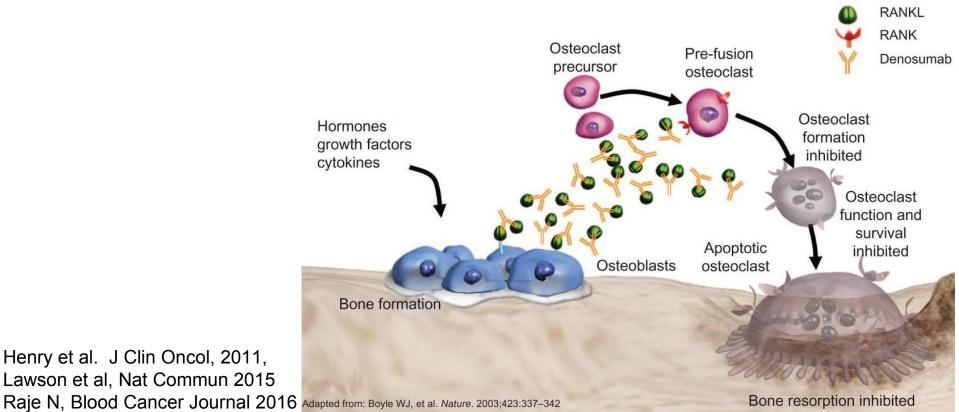
Phase 1 study: Pem + Len dex in RRMM



n (%)	All AEs	Grade 3-5	Immune-mediated AE
All AEs (N = 51)	48 (94)	33 (65)	n (%) Pembro +Len +
AEs in ≥6 Patients			Dex (N
Neutropenia	19 (37)	17 (33)	= 51)
Thrombocytopenia	21 (41)	9 (18)	Hyperthyroidism
Diarrhea	14 (28)	0	Grade 1 1 (2)
Fatigue	13 (26)	1 (2)	Hypothyroidism Grade
Anemia	11 (22)	6 (12)	1 2 (4)
Pruritus	6 (12)	0	Thyroiditis Grade 1
Hyperglycemia	9 (18)	4 (8)	1 (2)
Muscle spasms	7 (14)	0	
Myalgia	8 (16)	0	Increased transaminases Grade1 (2)
Blurred vision	7 (14)	0	3
Dizziness	6 (12)	0	Renal failure
Dyspnea	6 (12)	0	Grade 3 1 (2)

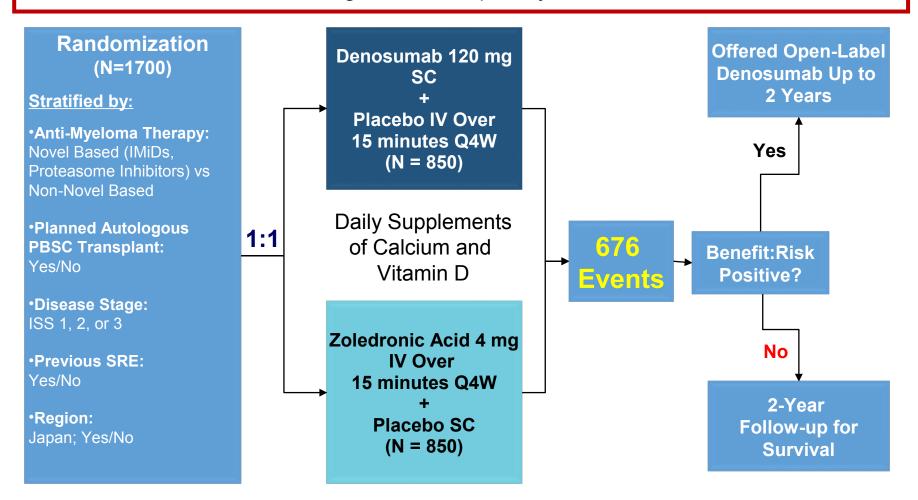
- AEs associated wit PEM were similar to other indications (solid tumors)
- There were 2 (4%) deaths due to treatment-related AES (hepatic failure related to venoocclusive disease, related to treatment combination; ischemic stroke related to lenalidomide)
- 3 (6%) pts discontinued due to treatment related AEs
- No dose modification or treatment discontinuation required for management of the reported immune related AEs
- No cases of pneumonitis or colitis were reported
- No infusion reactions were reported

Mateos et al, ASCO 2016

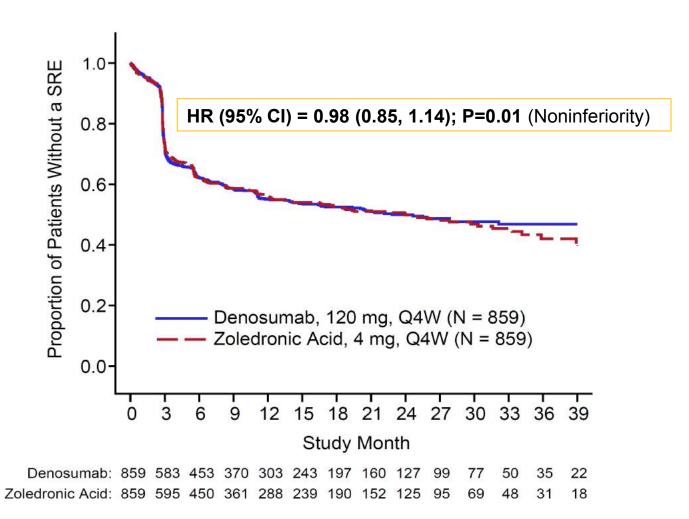


 \checkmark RANK ligand (RANKL) is a key driver of osteoclast-mediated osteolysis, increasing the risk of skeletal-related events and impacting morbidity, mortality and quality of life in MM pts

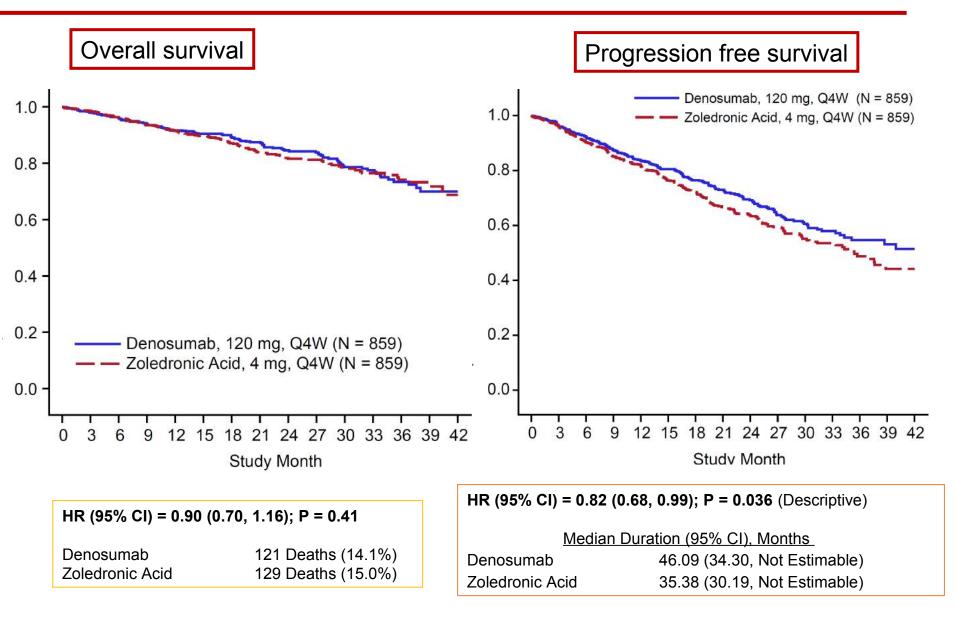
 \checkmark Denosumab, a human monoclonal antibody that binds with high specificity and affinity to RANKL, may directly inhibit RANKL-mediated myeloma growth and reactivation of dormant myeloma cells



Henry et al. J Clin Oncol, 2011, Lawson et al, Nat Commun 2015


Study design

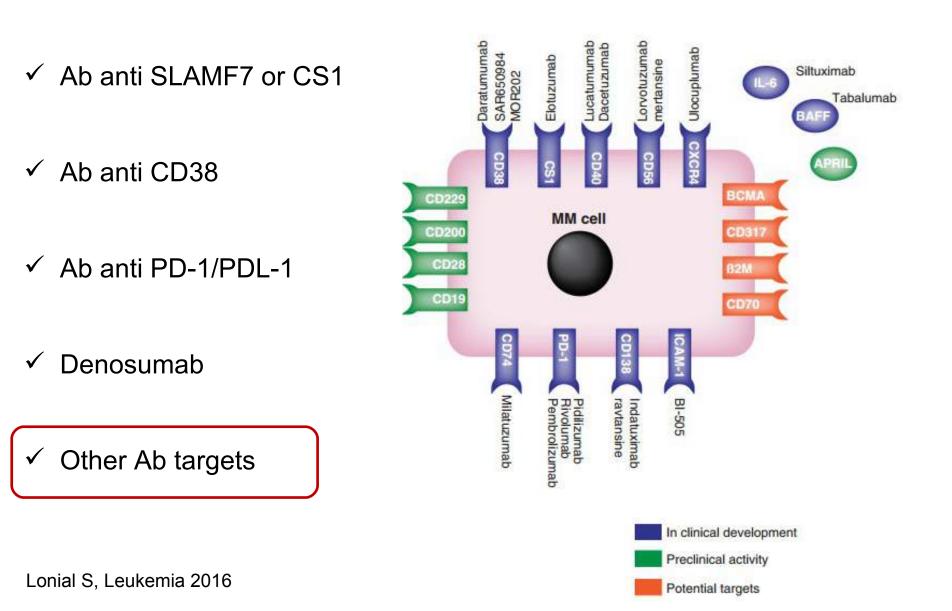
An International, Randomized, Double Blind Trial Comparing Denosumab With Zoledronic Acid for the Treatment of Bone Disease in Patients With Newly Diagnosed Multiple Myeloma



Raje N et al, SC-IT-AMG162-00010

Results: overall survival and progression free survival

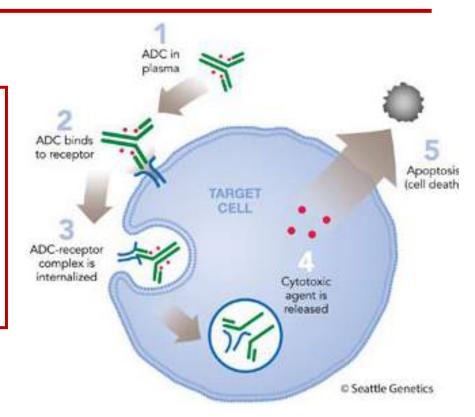
Raje N et al, SC-IT-AMG162-00010



	Denosumab N = 850, n (%)	Zoledronic Acid N = 852, n (%)
Hypocalcemia	144 (16.9)	106 (12.4)
Serious AEs of Hypocalcemia	8 (0.9)	2 (0.2)
Adjudicated Positive Osteonecrosis of the Jaw	35 (4.1)	24 (2.8)
Adjudicated Positive Atypical Femur Fracture	0	0
AEs Potentially Associated With Hypersensitivity	219 (25.8)	189 (22.2)
Serious AEs Potentially Associated With Hypersensitivity	5 (0.6)	9 (1.1)
Musculoskeletal Pain	407 (47.9)	425 (49.9)
Infections and Infestations	537 (63.2)	500 (58.7)
Serious AEs of Infections and Infestations	165 (19.4)	163 (19.1)
New Primary Malignancy	22 (2.6)	12 (1.4)
AEs Potentially Associated with Renal Toxicity	85 (10.0)	146 (17.1)
Acute Phase Reactions	46 (5.4)	74 (0.7)

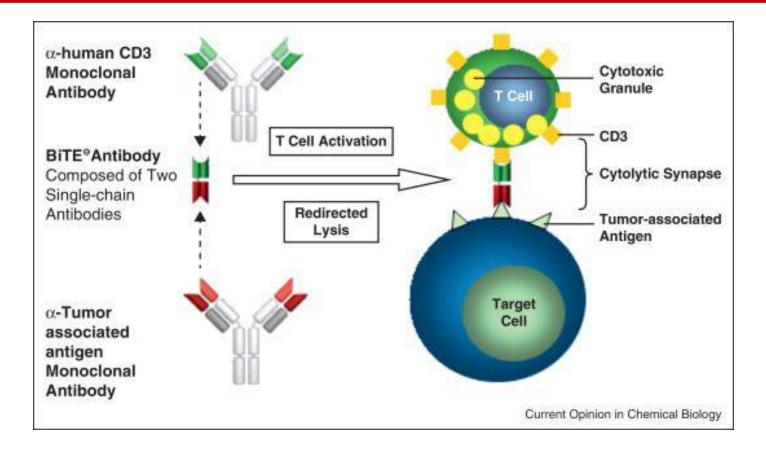
✓ There were significantly lower incidences of adverse events potentially related to renal toxicity with denosumab therapy compared to zoledronic acid,10% vs 17.1%, P<0.001, particularly in those patients with baseline CrCl≤60mL/minute, 12.9% vs 26.4%, respectively

✓ The incidence of hypocalcemia events was 144 (16.9%) for denosumab and 106 (12.4%) for zoledronic acid, with the majority of events grade 1 or 2; there were no grade 5 events



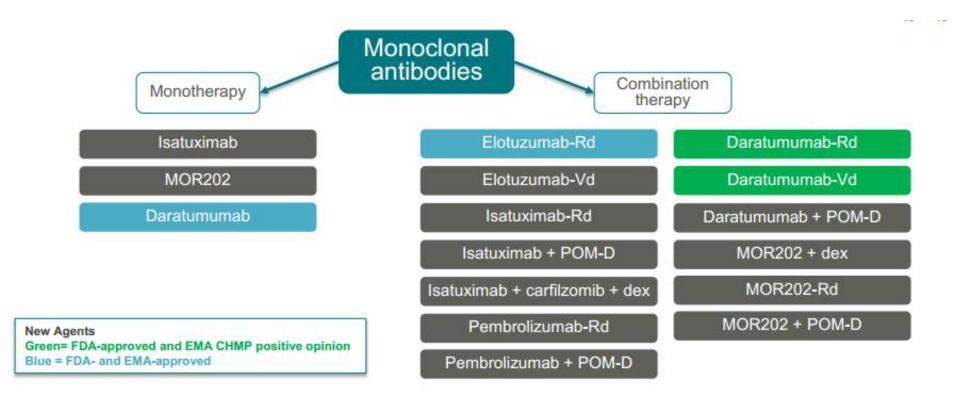
mAb	Target	Phase	Number of pts	Response rate %	Author		
Siltuximab	IL-6	1, RRMM	14	0%	Voorhees, Br J Hem 2013		
Dacetuzumab	CD40	1, RRMM	44	20% SD	Hussein, Haematologica 2010		
Lucatumumab	CD40	1, RRMM	28	43% SD, 4%PR	Besinger, Br J Hematol 2012	<u> </u>	Limitated efficacy as a single agent
DAT-SM6	GRP78	1, RRMM	12	33% SD	Rasche, Haematologica 2015		
Figitumumab	IGF-IR	1, RRMM	27	33%	Lacy, J Clin Oncol 2008		
BI-505	CD54	1, RRMM	35	20%	Hansson, Clin Cancer Res 2015		
Indatuximab LEN DEX	CD138	2 <i>,</i> RRMM	36	78% (73% prior exposure to LEN)	Kelly, ASH 2014		Promising efficacy in combination
Tabalumab BOR DEX	BAFF	1, RRMM	48	46%	Raje, ASH 2012		regimens

Monoclonal Ab drug conjugate


- Toxins or radioactive isotopes are bound to the costant region of the Mabs
- ✓ When Mab binds to the surface of tumor cells the toxin will kill cancer cells and cell within a certain radius (killing zone)

mAb	Target	Phase	Number of pts	Response rate %	Author
Milatuzumab- doxorubicin	CD74	1, RRMM	-	Ongoing	-
Anti-BCMA auristatin	BCMA	1, RRMM	24	ongoing	Cohen, Am Soc Hematol abstract 2016
Indatuximab- ravtansine	CD138	1, RRMM	23	52% SD+ PR for > 3 months	Kelly, ASH abstract 2014

Bispecific T-cell Engager Ab (BiTE)


BiTE in RR multiple myeloma

✓ Bispecific CD3/CD138 mAb (preclinical activity)

✓ Bispecific CD3/BCMA mAb (BI 836909) (phase 1 ongoing)

Summary: potential for mAb in RRMM

ASCT, autologous stem cell transplant; PFS, progression-free survival; RIC, reduced-intensity conditioning Empliciti US Prescribing information: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/761035s000lbl.pdf; Empliciti EU SmPC: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003967/WC500206673.pdf Darzalex US Prescribing information: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761036s004lbl.pdf; Darzalex EU SmPC: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004077/WC500207296.pdf

http://www.businesswire.com/news/home/20170224005351/en/DARZALEX%C2%AE%E2%96%BC-daratumumab-Receives-Positive-CHMP-Opinion-Treatment

Conclusions

- ✓ In RRMM setting daratumumab has shown robust single-agent activity, which has been enhanced in combination with other drugs (IMIDs and PIs), whereas the activity of other mAbs appears restricted to combination regimens
- ✓ mAbs are generally well tolerated with a favorable safety profile
- Combination with lenalidomide is probably the best option considering the positive effects of immune response of IMIDs
- ✓ Potential benefit of mAbs combinations themselves is under clinical testing
- mAbs may also have a role in early line of treatment or in smoldering myeloma suggesting, respecttively, a deeper response/PFS and a delay of symptomatic evolution of disease
- Denosumab is promising in setting of renal impairment (and improvement of PFS?)
- ✓ Further studies are needed to reveal the real impact of these agents in longterm survival and quality of life in patients with MM

Attention is the rarest and purest form of generosity Simone Weil

THANKS FOR YOUR ATTENTION