

Aggiornamenti ASCO 2018 neoplasie toraciche

Tiziana Vavalà, MD

SC di Oncologia, ASL CN1 tiziana.vavala@aslcn1.it

Aggiornamenti:

Lung cancer prevention Surgery in Lung cancer "Other "

CN1 FORMAZIONE

Lung cancer prevention

Abstract 6504 (Oral Session)

Lung cancer screening rates: Data from the lung cancer screening registry.

Lung Cancer Screening

Discussion: Comparison of USPSTF cancer screenings

Summary/Conclusions

- Annual LDCT screening (1.9% → 3.5%) remains inadequate across the United States following USPSTF recommendations, especially when compared to the other known cancer screenings.
- Effective screening can prevent 12,000 premature lung cancer deaths per year

Tobacco Dependence Predicts Higher Lung Cancer and Mortality Rates and Lower Rates of Smoking Cessation in the National Lung Screening Trial

Alana M. Rojewski, PhD; Nichole T. Tanner, MD; Lin Dai, PhD; James G. Ravenel, MD; Mulugeta Gebregziabher, PhD; Gerard A. Silvestri, MD; and Benjamin A. Toll, PhD

	1	FTND	HSI		
Variable	OR	95% CI	OR	95% CI	
Low dependence	0.94	0.76-1.16	0.95	0.80-1.14	
Medium dependence	0.67	0.54-0.84	0.75	0.63-0.89	
High dependence	0.71	0.58-0.87	0.72	0.60-0.85	
Very high dependence	0.59	0.48-0.73	0.59	0.49-0.72	

TABLE 2] Likelihood of Quitting Smoking by Level of Dependence According to FTND and HSI

Chest 2018, article in press

r

Trends in lung cancer and smoking behavior in Italy: an alarm bell for women

Annalisa Trama¹, Roberto Boffi², Paolo Contiero¹, Carlotta Buzzoni¹, Roberta Pacifici⁵, Lucia Mangone⁵; AIRTUM Working Group^{*}

A point of concern is that in just 1 year (from 2016 to 2017) the number of smoking women

increased from 4.6 million to 5.7 million whereas the number of smoking men decreased from 6.9 to 6 million.

European position statement on lung cancer screening

Matthijs Oudkerk, Anand Devaraj, Rozemarijn Vliegenthart, Thomas Henzler, Helmut Prosch, Claus P Heussel, Gorka Bastarrika, Nicola Sverzellati, Mario Mascalchi, Stefan Delorme, David R Baldwin, Matthew E Callister, Nikolaus Becker, Marjolein A Heuvelmans, Witold Rzyman, Maurizio V Infante, Ugo Pastorino, Jesper H Pedersen, Eugenio Paci, Stephen W Duffy, Harry de Koning, John K Field

3 All future screenees entering into early detection programmes for lung cancer should be provided with carefully constructed participant information on the potential benefits and harms of screening to enable them to make an informed decision as to whether they wish to participate or not. Smoking cessation advice should be offered to all active smokers.

Current Lung Cancer Screening Paradigm is Not Widely Adopted

Early Detection of Lung Cancer is a High Unmet Medical Need

- Low-dose computed tomography (LDCT) improves lung cancer mortality in high-risk individuals
- Rate of clinical adoption remains low (1.9%)^{2,3}
- Criticisms of LDCT include risk of false positives and logistical challenges⁴

cfDNA-Based Tests Represent an Untapped Opportunity for Cancer Detection

- Cancer genotyping using plasma cfDNA
 - Adopted for detection of specific actionable mutations
 - Only validated for advanced cancer
 - Uses smaller targeted gene panels
- Cancer detection using plasma cfDNA
 - Aims to identify a broader cancer
 "signature" rather than specific individual mutations
 - Genome-wide approaches offer additional information that allow early detection
 - Could address the unmet medical need

National Lung Screening Trial Research Team. N Engl J Med 2011; 365:395 409. ²Pham D et al. J Clin Oncol 36, 2018 (suppl; abstr 6504). ³Jemal A, Fedewa SA, JAMA Oncol 2017;3:1278 1281. ⁴McCunnet RJ et al. Chest Journal 2014;145(3):618-24.

FPI: 08/2016; 11,648 enrolled; Target: Complete Enrollment of all 15,000 Participants in 2018

V

CCGA is a Prospective Longitudinal Cohort Study Designed for Early Cancer Detection: First Training and Test Set Analyses

Simulating Existing Assays: Not Optimized for Screening

- 561 non-cancer and 118 pts with lung cancer from CCGA analyzed
- Testing a single location (emulating ddPCR) without WBC filtering
 - KRAS:p.G12X

(1)

- Excellent specificity
- Small number of cancer cases detected
- NGS panel reporting 813 clinically actionable variants (OncoKB levels 1-4)* without WBC filtering
 - Many cancer cases with variants
 - Many non-cancer cases with variants
- CCGA Targeted Assay with WBC filtering
 - Increased detection
 - Reduced false-positives (set at 98% here)
 - Continuous statistical score allows for tradeoffs in sensitivity/specificity

*Chakravarty D et al. JCO Precis Oncol 2017;doi: 10.1200/PO.17.00011. Epub 2017 May 16

Results

Conclusions

Azienda Sanitaria Loca

di Cuneo. Mondovì e Savioliano

2018 ASCO

PRESENTED AT

#ASCO18

When one the property of the surror, service in required for seven

- This first interim analysis of the CCGA study (2,800 participants, 174 with lung cancer) shows:
 - Comprehensive sequencing of plasma cfDNA generates high-quality data across the spectrum of genomic features that permits non-invasive cancer detection
 - These assays detect lung cancer across stages, histologies, and populations, and results replicate in an independent test set
 - WBC-derived mutations and copy number variations are a major source of potential false positives that must be accounted for to achieve high specificity
- Together, these early results support the promise of using cfDNA-based sequencing to develop an early cancer detection test with high specificity
 - Further assay and clinical development in large-scale clinical studies is ongoing
 - CCGA (NCT02889978): remaining participants for further training and clinical validation

PRESENTED IN Geoffrey R. Oxnard, MD

STRIVE (NCT03085888): clinical validation in an intended use population

16

About liquid biopsies...

Key points

- Biopsies are a fundamental part of lung cancer care, and will never be eliminated
- A good liquid biopsy <u>can</u> replace <u>some</u> inconvenient tumor biopsies
- <u>But</u>... don't let a <u>bad</u> liquid biopsy supplant an inconvenient tumor biopsy
- Liquid biopsies may create new opportunities impossible with tumor biopsies

HARVARD MEDICAI

Presented By Geoffrey Oxnard at 2018 ASCO Annual Meeting

Meeting Abstracts

Home Search Abstracts Browse Abstracts Meeting Home

Potential role of serial liquid biopsies to guide treatment decisions in NSCLC.

Sub-category: Metastatic Non-Small Cell Lung Cancer

Citation:

J Clin Oncol 36, 2018 (suppl; abstr e21079)

Author(s): Todd Cory Knepper, Theresa A. Boyle, Jhanelle Elaine Gray, James Kevin Hicks; H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; Department of Pathology, Moffitt Cancer Center, Tampa, FL; Moffitt Cancer Center, Tampa, FL

Results: 17 pts with NSCLC had serial liquid biopsies (35 total tests) performed. GAs were detected in 14 pts (82.4%) (median = 4 GAs per test; range = 0-13). <u>Of the 14</u> pts with GAs detected, none of the intra-patient reports were identical. New GAs were detected in 13 (92.9%) pts and GAs were lost in 4 (28.6%). [...]

Conclusions: The <u>results of serial liquid biopsies performed on pts</u> with NSCLC are not static with none having identical results

between tests. Serial liquid biopsies revealed clinically important results with known resistance alterations detected on the subsequent test in 27.3% of cases treated with EGFR inhibitors and previously undetected potentially targetable alterations detected in 42.9% of cases.

Surgery in Lung Cancer

Lymph Node Collection Kit

Non-small Cell Lung Cancer: Low Tech to High Tech*

David Harpole, M.D. Professor of Surgery Associate Professor of Pathology Director of the Duke Thoracic Oncology Laboratory Duke University Medical Center Dutham, NC USA

PRESENTED AT 2018 ASCO

#ASCO18 Blans are the presently of the author permittable regulated for mass.

PRESENTED DV

Wicked Heterogeneity Across NCDB Institutions

	Community	Comprehensive Community	Academic/Research NCI-designate Comprehensi				
Quality of lymph node examination							
pNX rate* 9 7 6 5							

Patients: Kit v Non-Kit Resections

Prospective study:1,171 resections*, 32 surgeons; 650 (56%) kit cases by 20 surgeons

	Kit	Non	Р
Mean age, years	68	67	0.03
Female sex	53	48	0.09
Race White/black	80/18	76/23	0.12
Insurance Medicare Commercial Medicaid	43 18 36	43 17 37	0.52
Histology Adeno Squamous Other	46 28 25	51 31 18	<.0001
Extent of resection Pneumonectomy Lobe/bilobectomy Sublobar	3 91 6	6 76 18	<.0001

	Kit [†]	Nont	P
Clinical Stage I II III IV	72 16 8 4	68 15 10 0	0.18
Technique of resection Open Robotically-assisted Video-assisted	42 44 14	52 28 20	<.0001
Pathologic stage IA1 IA2 IA3 IB IIA IIB IIIA IIIB IV	5 20 14 22 4 17 13 3 1	4 26 15 21 2 18 12 2 0	0.23

*Primary surgical resections, excluding neoadjuvantly treated patients; *percentage unless otherwise indicated

PRESENTED AT: 2018 ASCO

#ASCO18 Men as the property of the earliery permittate required for hear.

PRESENTED BY RAYMOND U. OSAROGIAGBON, MBBS

Conceptual Model: The Chain of Responsibility

It is the Kit, Not Heightened Awareness

Indicates 'mandatory' Pre-labelled with anatomic nome

 Post-Implementation with the kit has better quality than pre-implementation levels

 Post-Implementation cases without the kit have quality closer to pre-implementation

2018 ASCO

PRESENTED ATC

#ASCO18

PRESENTED BY: RAYMOND U. OSAROGIAGBON, WB85

Prospective randomized trial

Waiting for results.....

Systemic treatments

Bending the disease free and progression free survival curves in lung cancers

Stage III Inoperable and Unresectable Lung Cancers: Durvalumab vs Placebo after Concurrent Chemotherapy & Radiation

r > What, When, and How? Juggling ...

°Signals of immunogenic cell death (ICD) . ang Y, Front Pharmacol 2018; Demaria S, JAMA Oncol

OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal

Melero I et at. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev 2015

ANTI-PD/PD-L1 AS BACKBONE TO A.S.L. CN1 Azienda Sanitaria Locale d Cunno, Mondovi e Savigiano

Nivolumab	Pembrolizumab	Atezolizumab	Durvalumab
 Chemotherapy Radiation/ablation EGFR/ALK TKI Anti-VEGF/VEGFR inhibitor Vasc disrupt agent Hypomethylating agent HDAC inhibitor SPK inhibitor C-Met inhibitor Glutaminase inhibitor Dasatinib Vaccine Gene therapy IL15 agonist PEG IL10 TGF_βR1 inhibitor Anti-CD27 Anti-CSF-1R IDO-1 inhibitor Anti-CSF-1R IDO-1 inhibitor Anti-LAG Anti-LAG Anti-TIM-3 Anti-KIP 	 Chemotherapy Radiation EGFR/ALK TKI Anti-VEGF/VEGFR inhibitor Hypomethylating agent HDAC inhibitor CDK inhibitor BTK inhibitor BTK inhibitor PI3K inhibitor KIT/CSF1R/FLT3 inh FGFR inhibitor JAK1 inhibitor GRM1 inhibitor FAK inhibitor Anti-EGFR Anti-CEACAM1 PEG hyaluronidase Vaccine Oncolytic PEG IL10 Anti-CSF-1 IDO1 inhibitor Anti-CTLA4 Anti-CTLA4 	 Chemotherapy Radiation EGFR/ALK TKI Anti-VEGF/Ang-2 MEK inhibitor Vaccine Adoptive cell therapy Anti-CEA/CD3 Anti-CEA/IL-2 Anti-CD40 Anti-CD27 Anti-CSF-1 Adenosine A2A inhibitor IDO-1 inhibitor Anti-CTLA4 Anti-TIGIT 	 Chemotherapy Radiation EGFR/ALK TKI VEGFR inhibitor BTK inhibitor BTK inhibitor MEK inhibitor HAD inhibitor PARP inhibitor VEE1 inhibitor ATR inhibitor ATR inhibitor ATR inhibitor CXCR4 inhibitor CSF Anti-CD73 Anti-CCR4 Anti-CSF1R Anti-NKG2A Adenosine A2a inhibitor IDO1 inhibitor Anti-PD-1

Avelumab: ALK inhibitor (crizotinib and lorlatinib), anti-41BB, anti-OX40

1

di Cuneo, Mondovì e Savia

Immunotherapy plus chemotherapy

Immunotherapy plus immunotherapy

Immunotherapy plus radiotherapy

Early stage

Abstract #8510 Phase III Neoadjuvant Trials of Immune Checkpoint Inhibitors

	IMPower030	Checkmate 816	KEYNOTE 671	
Agent Atezolizumab		Nivolumab	Pembrolizumab	
Patients Planned	Patients Planned 302		786	
Stages II-IIIB		IB-IIIA	IIb-IIIA	
Endpoints (1st/2nd)	MPR/EFS-PCR	EFS-PCR/MPR	EFS-OS/MPR-PCR	
Arms Atezo-Chemo Chemo		lpi-Nivo Nivo-Chemo Chemo	Pembro-Chemo Chemo	

Phase III Adjuvant Trials of Immune Checkpoint Inhibitors

	ANVIL	BR.31	IMPower010	EORTC 1416
Agent	Nivolumab	Durvalumab	Atezolizumab	Pembrolizumab
Patients Planned	714	1360	1127	1380
Endpoints	DFS	DFS	DFS	DFS
Duration of ICI	1 year	1 year	1 year	1 year

ome

earch

rowse

leeting

PRESENTED BY Mark G Kris, MD

Biomarkers

Biomarkers

Abstract 12000

8:00 AM - 8:12 AM

Association of high tissue TMB and atezolizumab efficacy across multiple tumor types.

Fatema A. Legrand, PhD - First Author • Disclosure Roche/Genentech

Abstract 12001 8:12 AM - 8:24 AM

Prospective clinical evaluation of blood-based tumor mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC): Interim B-F1RST results.

Vamsidhar Velcheti, MD - First Author • Disclosure Taussig Cancer Institute, Cleveland Clinic

Tumor biology oral session Tuesday, June 5, 8-11AM,

Circulating Biomarkers

Poster Board: #239 • Abstract 3025 Serum interleukin 8 (IL-8) may serve as response to immuno-oncology (I-O) the	a biomarker of rapy.
Michael Carleton, PhD - First Author	
Bristol-Myers Squibb	2,000
Poster Board: #305 · Abstract 3091	cases
Phase I trial of BMS-986253, an anti-IL- antibody, in patients with metastatic o solid tumors.	8 monocional r unresectable
Julie Marie Collins, MD, MPH - First Author	
National Cancer Institute	Monother
Poster Board: #319a · Abstract TPS3109	ару
Phase 1b/2 study of nivolumab in combi anti-IL-8 monoclonal antibody, BMS-986 biomarker-enriched population of patien advanced cancer.	nation with an 253, in a nts with
Ignacio Melero Bermejo, MD, PhD - First Author Clinica Universidad de Navarra	Combinati

Overall Survival by PD-L1 TPS

Key-Note 189 phase III trial

1.00 -

- Retrospective testing from CheckMate 026, 012, and 568 informed selection of the TMB cutoff (≥10 mut/Mb)^{1–3}
- ORR increased in patients with higher TMB, and plateaued at TMB ≥10 mut/Mb

CheckMate 568: ROC for TMB by ORR irrespective of tumor PD-L1 expression (n = 98)

9-10 mut/Mb

False-positive fraction

0.75

1.00

1. Carbone DP, et al. N Engl J Med 2017:376:2415-2426; 2. Hellmann MD, et al. Cancer Cell 2018. doi: https://doi.org/10.1016/j.ccell.2018.03.018. Epub; 3. Ramalingam S, et al. Presented at AACR Annual Meeting; April 14-18, 2018: Chicago, IL, USA, CT078,

New options?

Joursel Ma, et al ASCO 2019 Alestrait 5002

Presented by Novello S. Critical Review POST-ASCO 2018

Focus on initial response or on A.S.L. CN1 Azienda Sanitaria Locale d Curee, Mondoir e Savigiero

Clinical and molecular features predicting <u>long-term</u> <u>response (LTR)</u> to anti-PD-(L)1 based therapy in patients with NSCLC

- Responders with LTR vs STR: Depth of response, but not tumor burden, correlated with LTR
 - Greater proportion of patients with BOR <-50% and <-80% in LTR

• Baseline tumor burden in patients with LTR is similar to those with STR

Smoking status, PD-L1 expression, and TMB correlate with long-term response in NSCLC patients treated with anti-PD-(L)1 based therapy. **TMB**, **but not PD-L1 expression**, **is distinctly increased in those with LTR compared to those with transient response**. The features predicting initial response compared to durable response may be distinct.

Rizvi H, et al. ASCO 2018. Abstract 9022.

Infine....

2018 ASCO

PRESENTED AT:

#ASCO18

Net are the property of the duties.

Goals of care

Patient & Oncologist Discordance in Goals of Care in EOL Decision Making

Funded by NINR: NRO14856

Sara L. Douglas, PhD, RN¹, Barbara J. Daly, PhD, RN¹, Neal J. Meropol, MD², Amy R. Lipson, PhD³

¹ Case Western Reserve University, School of Nursing & Case Comprehensive Cancer Center, Cleveland, OH
² Flatiron Health, New York, NY; Case Comprehensive Cancer Center; Case Western Reserve University.
³ Case Western Reserve University, School of Nursing

PRESENTED IN: WANTERSTOCKERPLAS

http://clicktoeditURL.com

K Back	Touch To Sele	ect Next	Measur	ring	Goals of Ca	re		
Regarding y to YOU righ	your care, what is n it now?	nost important	Patient sci	reen:				
Quality of lif is all that m Quality o	fe vs Len atters is al of life	gth of life I that matters	<u>Oncologis</u> "Regardin what is m right now	<u>t ver</u> ig the ost in ?"	sion: (2 questi care of this pa portant to YOU	<u>ons)</u> itient, J		
0 🔶		Discord b/w #10007	patients &	: onco	o <mark>logists goals in</mark> Sara Do	n <mark>end o</mark> l uglas, C	f <mark>life c</mark> Case C	are CC
		Question	Concordance	e betwe	en goals of patients	and their	oncolog	lists
PRESEN	TED AT 2018 AS ANINUAL M	Strategy	168 patients questioned e	with ad very 3	vanced cancer and months: quality of lif	their 8 on e vs lengt	cologists h of life	5
		Methods	Discordance:	40 poi	nt diff, scale from 0	(QOL) – 1	00 (leng	jth)
		Findings	Pts goal Pts goal Oncs goal Discordance	vs vs vs in 30%	onc goal, onc view of pts goa onc view of pts goal , persisted from enre	r = I, r = I, r = ol't to dea	= .13 = .29 = .71 th in 77°	%
		Conclusions	Substantial d Oncologists t	liscorda hought	nce persisted from patients' goals were	enrolment e similar to	t to deat o their o	h wn
		PRESENTED AT 2018 ASCO	#ASCO18	PRESENTED BY	WARTINSTOCILER			

E per noi??

ASCO Meeting Library

A feasibility study to examine the role of a mindfulness-based wellness curriculum for early clinical

 trainees.
 Authors:

 Monica Sheila Chatwal, Marc McDowell, Christine Vinci, Richard R. Reich, Angela Reagan, Jhanelle Elaine Gray;

 Presented Monday, June 4, 2018

45%-80% of practicing oncologists worldwide reporting symptoms of burnout (Hlubocky et al. ASCO 2017)

A total of **six monthly 30 minute sessions**. Participants will complete questionnaires pre- and post-intervention.

Primary aim is feasibility determined through recruitment, participation, completion and compliance rates.

Secondary aim is acceptability, assessed using post-intervention questions addressing usefulness of the program. 27 of 28 eligible participants have enrolled and completed pre-session questionnaires.

Mindfulness is a strategy that can be used to recognize and cope with stress and burnout and foster resiliency. The goal is not to focus on relaxation, but rather on self-awareness, thus extending into a form of "reflective practice"

Opportunities to Cure More Patients with Localized Lung Cancers Take Home Messages: Re-imagine Care

- The goal of care is cure. The risk-benefit analysis here is different than when caring for patients with extra-thoracic metastases
- All members of the multimodality team need to promote and support the overall regimen and not just individual components
- With more modalities, more agents, and less lifestyle disruption by all our modalities, re-imagine both care and research for all individuals with localized lung cancers
- Choosing "the best" for each component matters

littles are the preparity of the patho

PRESENTED AT

 Achieving optimal results requires even closer attention to the sequence, timing, and benefits of concomitant use

Grazie

Tiziana Vavalà, MD

SC di Oncologia, ASL CN1 tiziana.vavala@aslcn1.it

