Myeloma: Solitary & Disseminated

Mario Levis

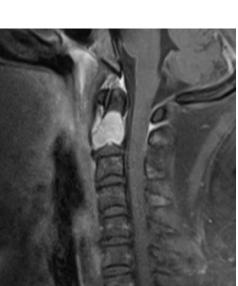
Department of Oncology, Radiation Oncology, University of Torino

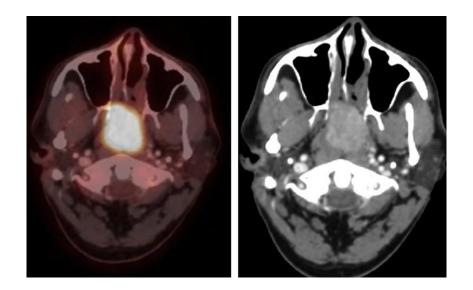
CURATIVE RADIOTHERAPY FOR SOLITARY PLASMACYTOMA

INTRODUCTION

- □ Solitary plasmacytoma (SP) is a plasma cell disorder characterized by localized accumulation of neoplastic monoclonal plasma cells in bone, or in soft tissues, without any evidence of systemic involvement.
- Subclinical bone marrow involvement detected by sensitive tests such as flow cytometry predicts a high rate of progression to MM (56% to 70%) over a short period of time (2 to 3 years).
- □ Rarely a SP may be associated with POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder, and skin abnormalities). Definitive RT can result in long-term local control of the plasmacytoma, with improvement of the symptoms of POEMS syndrome in up to 50% of the patients

Solitary Plasmacytomas have been classified into 2 groups:


A) solitary bone plasmacytoma (SBP)


frequently occurs in the axial skeleton. Has a high risk of progression to MM, (65-84% @10 years).

B) solitary extramedullary plasmacytoma (SEP)

(20% to 30% of plasmacytomas), occurring mostly in the head and neck region. SEPs are often localized tumors, and RT achieves long-term control with a higher cure rate than SBP (MM progression of 10-30% @10 years).

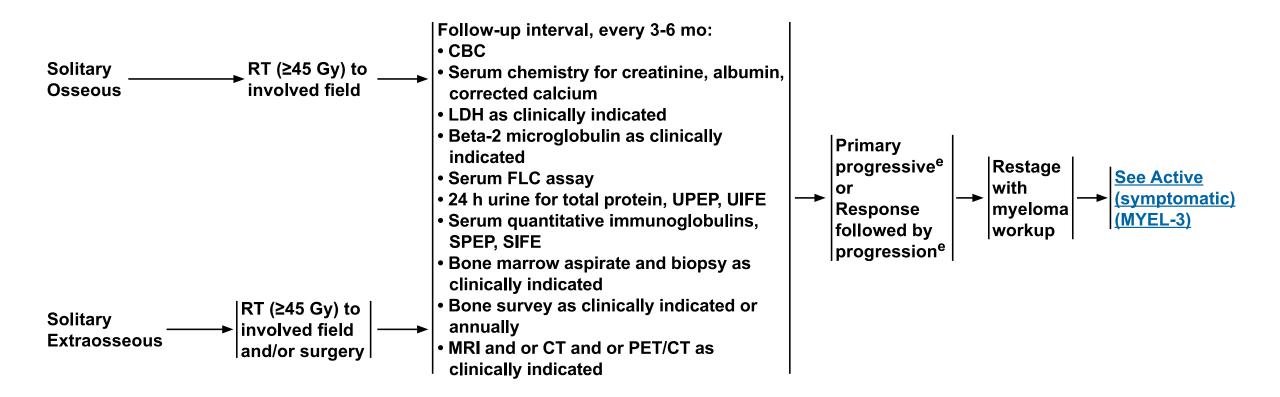
Staging of Solitary Plasmacytoma

Table 1 Diagnostic criteria for solitary plasmacytoma, as recommended by the International Myeloma Working Group (1).

 The diagnosis of solitary plasmacytomas is based on the exclusion of systemic plasma cell disorders.

·	· · ·
Plasma cell disorder	Diagnostic criteria
Solitary bone plasmacytoma, or solitary extramedullary plasmacytoma	 Biopsy-proven solitary destructive lesion of bone or soft tissue mass of clonal plasma cells. Absence of clonal plasma cells in bone marrow biopsy and aspirate. Normal skeletal survey and magnetic resonance imaging (or computed tomography) of spine and pelvis (except for the primary solitary lesion) If available positron emission tomography/computed tomography
Solitary plasmacytoma with minimal marrow involvement	 phy showing solitary lesion (2) Absence of end-organ damage such as hypercalcemia, rena insufficiency, anemia, or bone lesions (CRAB) attributed to a plasma cell proliferative disorder As above but: Clonal bone marrow plasma cells are detected but quantified to be <10%

Tsang RW, et al. ILROG guidelines, IJROBP 2018


Solitary Plasmacytoma

National

Cancer Network[®]

NCCN

Comprehensive

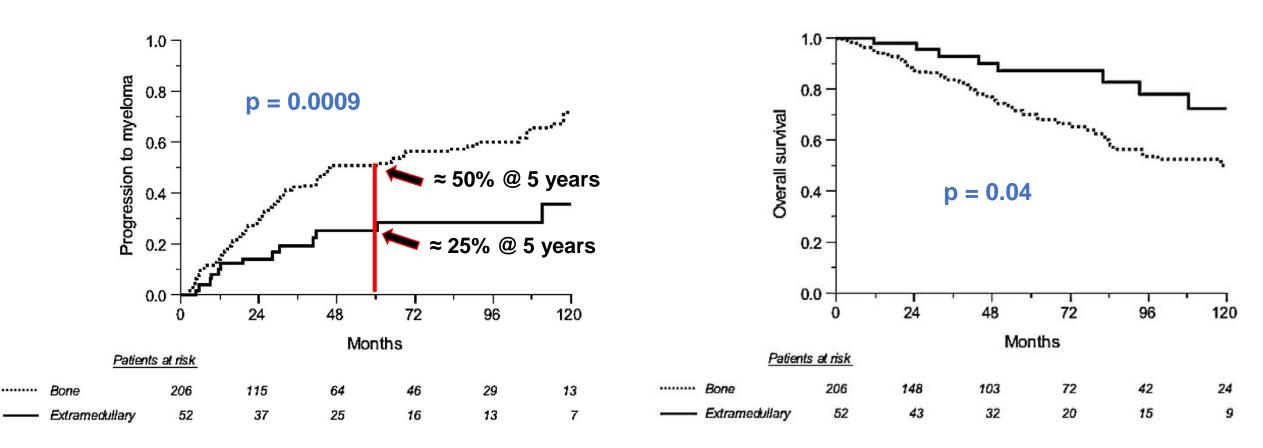
PROGNOSTIC FACTORS and CLINICAL EVOLUTION

□ Microscopic disease extension

Sensitive tests (BM flow citometry, cytogenetics, MRI, PET-CT) encouraged to detect small tumor burden

□ Identification of ≥2 separate plasmacytomas

presence of tumor burden (even small) away from SP suggests a high risk of evolution to MM in 2-3 years



Progression rate to MM following RT is more rapid in the first 3 years (14% per year) than in the subsequent 7 years (3% to 4% per year), reaching a 10-year rate of 65%. This suggests that subclinical disease most likely existed in up to 40% of these patients with SBP at the time of definitive RT.

OUTCOMES AND PATTERNS OF FAILURE IN SOLITARY PLASMACYTOMA: A MULTICENTER RARE CANCER NETWORK STUDY OF 258 PATIENTS

Site of Disease

DEPARTMENT OF ONCOLOGY

Ozsahin M, et al. IJROBP 2006

Bone

□ Optimal dose of radiation for SP is not well established (poor methodology due to small numbers and retrospective design)

RT dose

- Common practice: 40-50 Gy
- □ Sporadic local relapses for doses >50 Gy
- □ Lack of dose-response relationship for doses >35 Gy, particularly for lesions <5 cm

	Table 2. Radiat	ion therapy dose	
	≤30 Gy	35 Gy	40–50 Gy
Osseous Soft tissue	5 (16%) 2 (14%)	15 (47%) 12 (86%)	12 (37%) 0

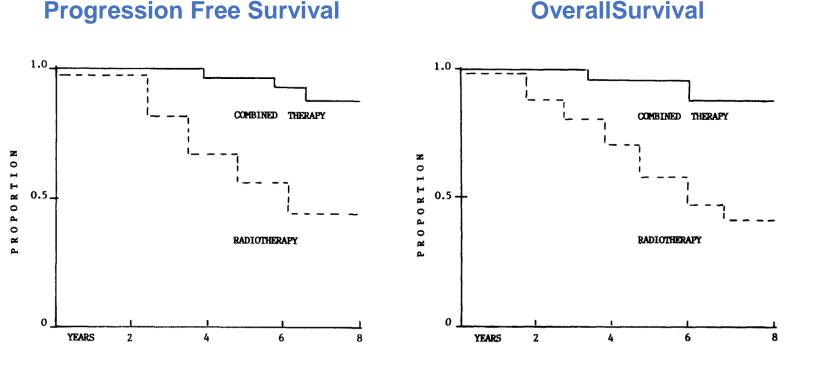
Tsang RW, et al. IJROBP 2001

Combined Chemo/Radiation

"High risk" patients (subclinical systemic disease at diagnosis) may benefit from systemic therapy upfront, with or without RT depending on the clinical situation.

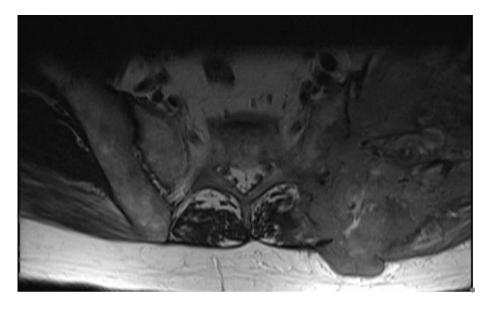
Yet some argue that MM with minimal disease burden and absence of symptoms remains incurable; therefore the <u>SP should still be treated with definitive RT</u> with deferred systemic therapy until symptomatic progression to MM.

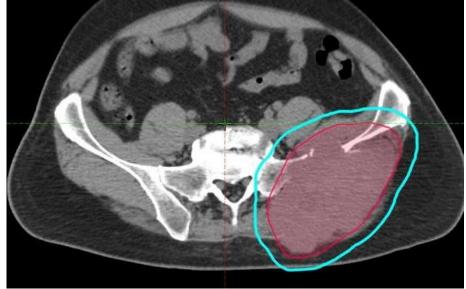
In practice, the decision to give systemic therapy is made by the attending hematologist and should be individualized based on considering other important factors which may indicate a biologically aggressive or clinically unfavorable disease, such as:


- o age
- o performance status
- $\circ~$ size and location of the SP
- o monoclonal protein level, and molecular or cytogenetic characterization (if available)

IMPROVED OUTCOME IN SOLITARY BONE PLASMACYTOMATA WITH COMBINED THERAPY

OverallSurvival

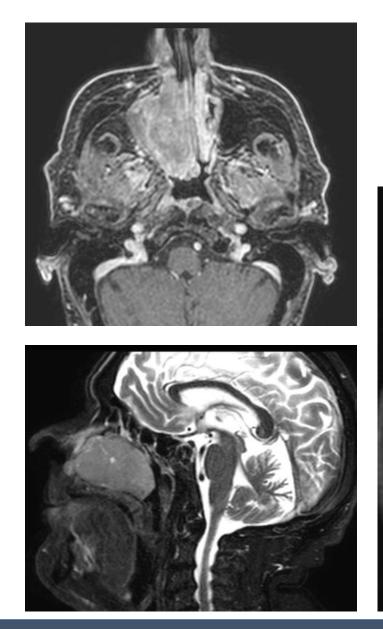



Randomized Controlled Trial

- □ 53 patients affected with SBP
- □ RT (40-50 Gy) +/- adjuvant melphalan (every 6 weeks for 3 years)
- The use of adjuvant chemotherapy after RT improved duration of remission and survival without severe side effects.
- The group was too small to draw definitive conclusion and more trials are necessary to confirm the role of systemic therapies in this setting.

Aviles A, et al. Hematol Oncol 1996

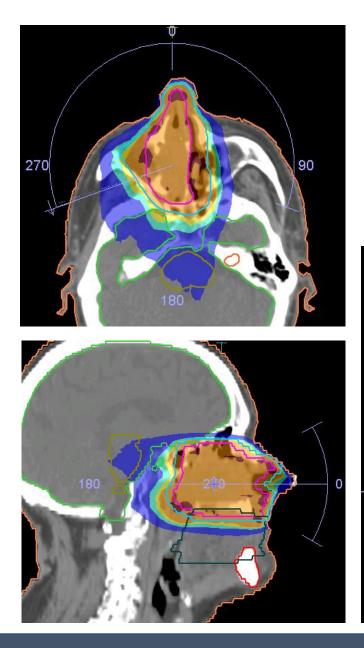
Combined Chemo/Radiation



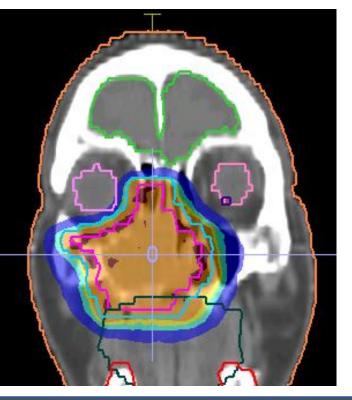
Radiation Volumes

- Current recommendations favor radiation fields encompassing only the primary lesions, with generous margins (1.5-2cm) to cover both the osseous and soft tissue extensions of the tumor (other than the entire involved bone)
- Prophylactic regional nodes irradiation is not necessary in SBP, as isolated regional node failure is low after local RT without intentional coverage of adjacent nodes
- Elective nodal irradiation is not routinely indicated in EMP patients, unless regional nodes are clinically involved or considered at high risk

Solitary Extraosseus Plasmacytoma

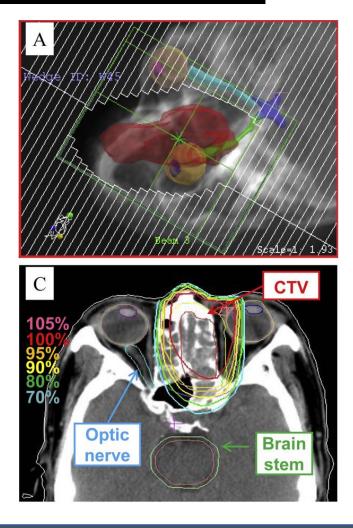

- □ 79 years old patient
- Nasal plasmacytoma

DEPARTMENT OF


OF

TURI

- □ Isolated lesion
- □ BCC in range
- **D** BOM negative


Solitary Extraosseus Plasmacytoma

- □ Treatment: Exclusive RT
- □ Prescribed dose: 44 Gy/22 fractions
- □ IMRT/VMAT

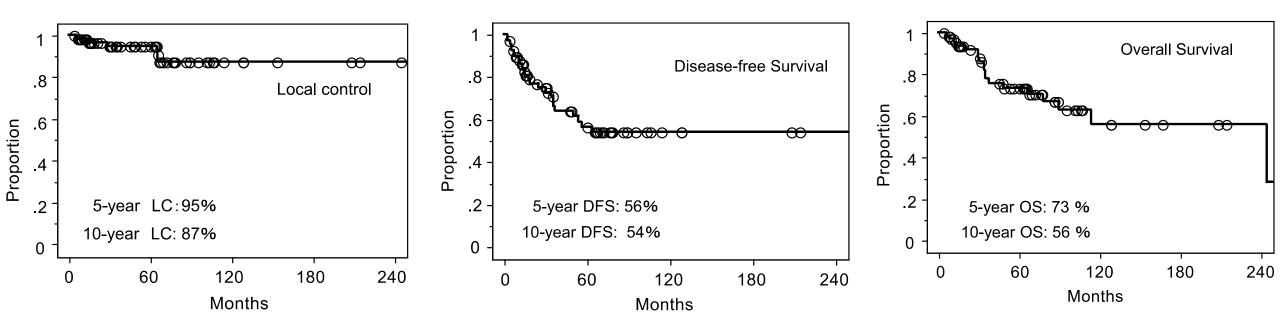
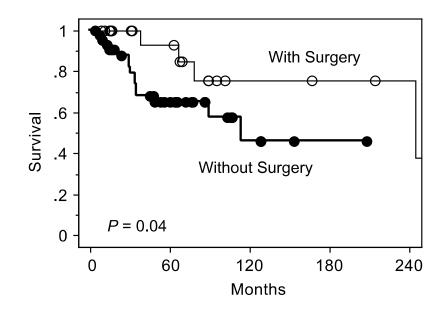


	Table 1. Patients and	tumor characteri	stics
		Number	Percentage (%)
	Age	12-83 (64)*	
	Gender (M/F)	43/24	
67 patients	ECOG performance status (0/1/2/unknown)	46/18/1/2	
	Tumor size Sites	$1-10 \text{ cm} (3.5)^*$	
1983-2008	Nasal/paranasal	36	54
1903-2000	Oropharynx	9	13
	Nasopharynx	7	10
	Orbita	6	9
Japanese cohort	Larynx	3	5
-	Salivary glands	2	3
	Lymph nodes	2	3
Median RT dose 50 Gy	Middle ear	1	1.5
	Thyroid	1	1.5
	Positive for M protein	15/59	22
	Positive for Bence-Jones proteins Concomitant disease	2/56	4
	Amyloidosis	2/67	3


DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Sasaky et al. IJROBP 2012;82(2):626-634

DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Sasaky et al. IJROBP 2012;82(2):626-634

Table 6. Adverse effects after the radiotherapy according to)
CTCAE ver. 3.0	

			Grad	le		
	0	1	2	3	4	5
Dermatitis Mucositis	9 10	27 20	8 13	0 1	0 0	0 0

Table 5. Prognostic factors for overa	ll survival
Prognostic factors	p value
Tumor size	
$\leq 5 \text{ cm} (n = 45) \text{ vs.}$	0.59
>5 cm (n = 13)	
Age	
$\leq 50 \ (n = 15) \ \text{vs.}$	0.3
>51 (n = 52)	
Gender	
Male $(n = 43)$ vs.	0.95
female $(n = 24)$	
Radiation dose	
$\leq 40 \text{ Gy} (n = 13) \text{ vs.} > 40.1$	0.82
Gy $(n = 54)$	
\leq 45 Gy (<i>n</i> = 17) vs. >45.1	0.73
Gy $(n = 50)$	
\leq 50 Gy (<i>n</i> = 56) vs. >50.1	0.72
Gy $(n = 11)$	
Surgery	
With surgery $(n = 23)$ vs.	0.04
without surgery $(n = 44)$	
Chemotherapy	
With chemotherapy $(n = 9)$ vs.	0.75
without chemotherapy $(n = 58)$	

DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Sasaky et al. IJROBP 2012;82(2):626-634

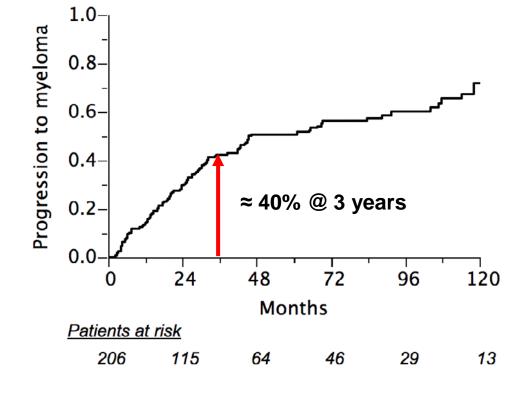
						OS	(%)	LCR	(%)	DFS	(%)
Series (ref.)	Year	Institution	Numbers of patients	Follow-up (m)	Dose (median)	5-у	10-у	5-у	10-y	5-у	10-у
Liebross (4)	1999	Single	22	44	40-60 (50)	73	50	95	95	56	NA
Chao (37)	2005	Single	16	66	40–50.4 (45)	85	54	100	100	75	75
Tournier-Rangeard (32)	2006	Single	17	80	40-65 (52.6)	82	63	88	73	64	54
Bachar (41)	2008	Single	68	96	10-50 (35)	76	56	91	88	NA	NA
Creach (34)	2009	Single	18	82	34-56 (50.4)	80	54	NA	NA	74	53
Present study	2010	Multiple	67	63	30-60 (50)	73	56	95	87	56	54

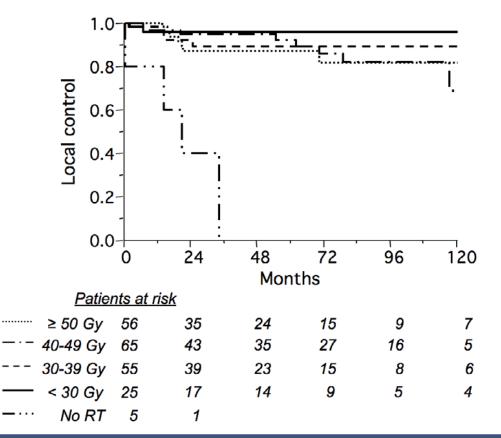
Table 7. Comparison and reviews of literatures for plasmacytoma of the head and neck

Abbreviations: DFS = disease-free survival; LCR = local control rate; OS = overall survival.

Solitary Osseus Plasmacytoma

BMC Cancer


BioMed Central


Open Access

206 patients

Research article

Prognostic factors in solitary plasmacytoma of the bone: a multicenter Rare Cancer Network study

DEPARTMENT OF ONCOLOGY

Knobel D, et al. BMC Cancer 2006

BMC Cancer

BioMed Central

Open Access

Prognostic Factors

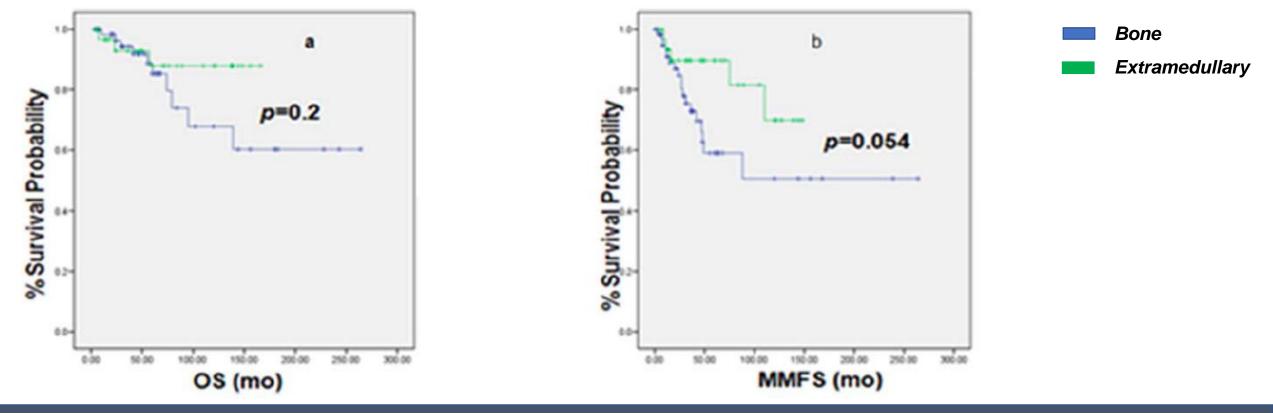
Research article

Prognostic factors in solitary plasmacytoma of the bone: a multicenter Rare Cancer Network study

Table 4: Multivariate analysis* (Cox model) in 201 irradiated patients

Covariable	OS RR	p-value	DFS RR	p-value	LC RR	p-value	MM RR	p-value	comment
Age (years)	0.59	<0.00001	0.79	0.02	-	-	0.78	0.01	≤ 60 years better
Localization (vertebra vs.other)	-		-	-	0.63	0.04		-	vertebra better
Tumor size (cm) (<5 vs. ≥5)	0.56	0.0007	-	-	-	-	-	-	<5 cm better

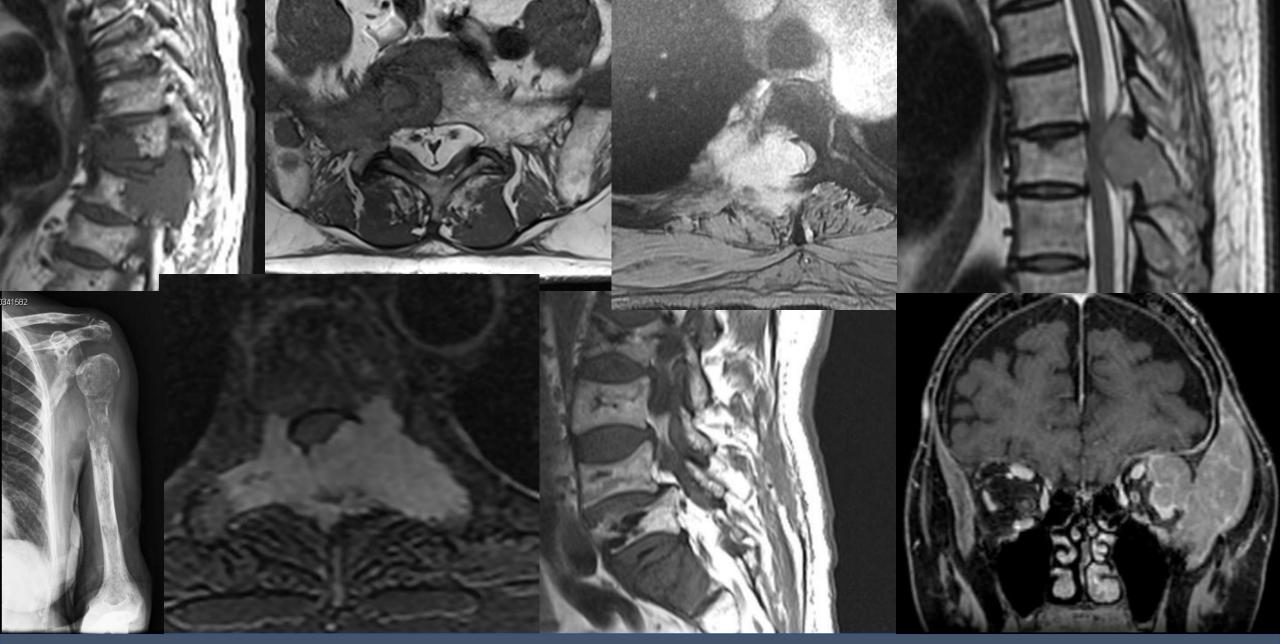
DEPARTMENT OF ONCOLOGY


Knobel D, et al. BMC Cancer 2006

Clinical features, outcome, and prognostic factors for survival and evolution to multiple myeloma of solitary plasmacytomas: A report of the Greek myeloma study group in 97 patients

- □ 82 patients (82.5%) received RT
- □ Median RT dose 40 Gy
- **1**991-2013

Katodritou et al. Am J Hematol. 2014;89:803-808


Future directions

- The addition of adjuvant novel agents to RT, such as proteasome inhibitors or immunomodulatory drugs (eg, lenalidomide), is a theoretically attractive approach, both in enhancing local control and possibly eradicating subclinical disease in patients with SP to prevent the development of systemic MM
- Preliminary data suggest feasibility and effectiveness of a combined approach
- This approach will be under active investigation in the United Kingdom in a phase 3 study, examining the potential role of lenalidomide with dexamethasone in improving progression-free survival

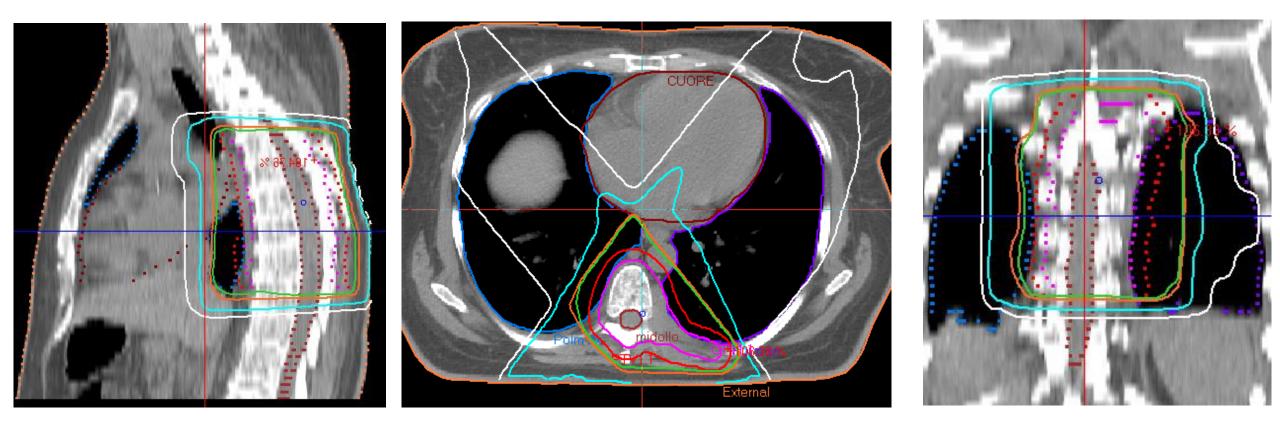
PALLIATIVE RADIOTHERAPY FOR MULTIPLE MYELOMA

Role of RT in Multiple Myeloma

1) Prompt and highly effective modality in the **palliation of painful** bony lesions and **mass effects** from soft tissue extensions

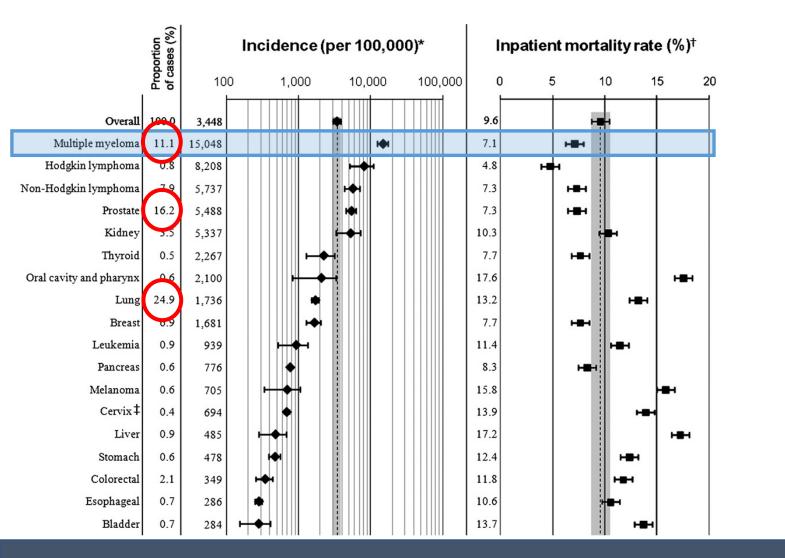
2) Efficacy in the **control of lytic** bone lesions

3) Efficient in reversing the morbidity of spinal cord and nerve root compression


Example of Palliative RT for Multiple Myeloma @ University of Torino

□ 40 years old female

- □ No previous history of cancer.
- Abrupt dorsal pain + left leg
 weakness and paresthesia that
 required hospitalization
- PCC: anemia K , BJ and M protein elevated
- **BOM:** PC involvement 90%
- **First clinical event of MM**

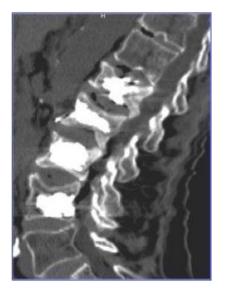


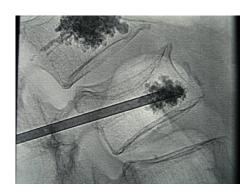
- □ Prescribed dose: 30 Gy/10 fractions
- □ Technique: 3DCRT
- □ Resolution of neurological symptoms after few sessions of RT

INCIDENCE AND TREATMENT PATTERNS IN HOSPITALIZATIONS FOR MALIGNANT SPINAL CORD COMPRESSION IN THE UNITED STATES, 1998–2006

- □ NIS and SEER database
- □ 15.367 patients
- **1998-2006**

Multiple Myeloma is:


3rd most prevalent diagnosis and
 1st leading cause of hospitalization in patients with malignant spinal cord compression



Mak et al. IJROBP 2011

Palliative treatment of bone metastasis

DRUGS & SURGERY

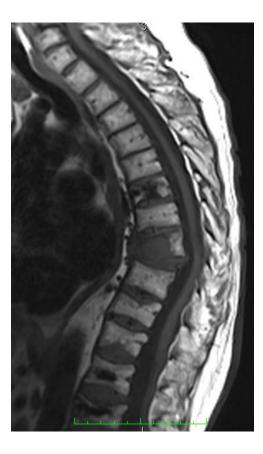
- Bisphosphonates
 - All patients receiving primary myeloma therapy should be given bisphosphonates (category 1)
 - Use of bisphosphonates in smoldering or stage I disease preferably in the context of clinical trial.
 - These patient should have bone survey annually and have monitoring for renal dysfunction or osteonecrosis of the jaw.
- Orthopedic consultation should be sought for impending or actual long-bone fractures or bony compression of spinal cord or vertebral column instability.
- Consider vertebroplasty or kyphoplasty for symptomatic vertebral compression fractures

BISPHOSPHONATES in Multiple Myeloma (International guidelines)

Factor	NCCN ¹⁴	ESMO ¹⁷	ASCO ¹⁵	Mayo ¹⁶	IMWG Reply to Mayo ¹⁸	EMN ¹⁹
Patient population	Active or all other stages of myeloma	Stage III or relapsed disease receiving conventional- dose chemotherapy	Lytic disease (lytic destruction of bone or compression fracture of spine from osteopenia) on plain radiographs or imaging studies	All patients with lytic bone disease on plain radiographs	In addition to radiographs, other imaging studies (MRI, CT, PET/CT)	All patients with lytic bone disease on plain radiographs
	Adjunctive therapy for bone disease		Patients with osteopenia but no evidence of lytic bone disease based on normal plain radiograph or BMD measurements	Patients with osteopenia or osteoporosis on BMD studies		Patients with osteopenia or osteoporosis on BMD studies
						Patients receiving chemotherapy
Administration	IV	Oral or IV	Oral or IV	IV	Oral or IV	Oral or IV
PAM IV infusion time	N/A	N/A	At least 2 hours	At least 2 hours	N/A	2 to 4 hours
Duration/frequency	N/A	Long term	Monthly for 2 years	Monthly for 2 years	2 years	2 years, if not in CR
				After 2 years: Discontinue if CR or stable plateau phase Decrease to every 3 months if active disease	or 2 years: Discontinue After 1 year: Discontinue After 1 year: Control CR or stable plateau if CR or VGPR and no physician discr hase active bone disease active bone disease rease to every 3 Continue if < VGPR and/	
N A - us it - using an	Characteria	N1/A		N1/A	continue at own discretion	
Monitoring	Chronic users should be monitored for renal function and ONJ	N/A	Monitor serum creatinine before each PAM or ZOL dose	N/A	N/A	Monitor patients for compromised renal function (creatinine clearance)
	Smoldering/stage I MM: Use BP in trial with yearly bone surveys		Regularly monitor serum calcium, electrolytes, phosphate, magnesium, hematocrit/hemoglobin			Patients with compromised renal function should have creatinine clearance rates, serum electrolytes, and albuminuria monitored
Choice	PAM or ZOL	N/A	ZOL, PAM, or CLO (non–United States)	PAM (favorable) or ZOL	PAM, ZOL, or CLO	ZOL, PAM, or CLO (where indicated)

DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Terpos et al. JCO 2013;31(18):2347-2357



Palliative treatment of bone metastasis

RADIOTHERAPY

- Low dose radiotherapy (10-30 Gy) can be used as palliative treatment for:
 - Uncontrolled pain
 - □ Impending pathologic fracture
 - □ Impending cord compression
- Limited involved fields should be used to limit the impact of irradiation on stem-cell harvest or impact on potential future treatments

ORIGINAL REPORT

Outcome After Radiotherapy Alone for Metastatic Spinal Cord Compression in Patients With Oligometastases

Functional Outcome

Local Control

Overall Survival

DEPARTMENT

OF

ERSITY OF TURIN

Table 2. Multivariate Analysis Prognostic Factors Re			ntial	Table 3. Actuarial Local Control Prognostic Fac				the Pote	ential	Table 4. Actuarial Survival F Potential Prognos					the
Variable	Estimate	95% CI	P*			%	, 0					c	%		
Age, years	LStinlate	3370 CI	,	Variable	At 6 Months	At 1 Year	At 2 Years	At 3 Years	P*	Variable	At 6 Months	At 1 Year	At 2 Years	At 3 Years	P*
≤ 64 > 64†	-0.37	-0.75 to 0.01	.056	Age, years ≤ 64	96	93	89	77		Age, years ≤ 64	92	71	58	52	
Sex Female	0.26	-0.32 to 0.84	.383	> 64 Sex	96	90	86	79	.855	> 64 Sex	90	70	59	48	.757
Male†				Female Male	97 95	96 89	89 86	82 73	.225	Female Male	92 91	77 65	65 53	54 49	.014
Type of primary tumor Breast cancer	-0.01	-0.65 to 0.63	.985	Type of primary tumor Breast cancer	98	96	87	79		Type of primary tumor Breast cancer	93	81	68	51	
Prostate cancer Myeloma/lymphoma	-0.34 -2.61	-0.89 to 0.21 -3.40 to -1.83	.222 < .001	Prostate cancer Myeloma/lymphoma	93 98	84 98	80 98	66 98		Prostate cancer Myeloma/lymphoma	89 95	71 89	62 81	54 72	
Lung cancer Other tumors†	0.03	-0.66 to 0.71	.941	Lung cancer Other tumors	96 96	88	88 88	64 71	.003	Lung cancer Other tumors	85 91	52 55	34 39	34 31	< .001
Interval from tumor diagnosis to MSCC, months				Interval tumor diagnosis to MSCC, months	05	0.0		05		Interval tumor diagnosis to MSCC, months					
≤ 15 > 15†	0.50	0.07 to 0.93	.022	≤ 15 > 15	95 97	92 92	92 85	85 74	.350	≤ 15 > 15	84 97	61 79	52 64	45 54	< .001

Rades et al. JCO 2007;25(1):50-56

Strahlentherapie und Onkologie

Impact of Radiotherapy on Pain Relief and Recalcification in Plasma Cell Neoplasms

Pain Relief

Factor	Patients No. (%)
Pain intensity at baseline	
Mild	13 (29)
Moderate	27 (60)
Severe	5 (11)
Pain relief after radiotherapy	
Complete	21 (47)
Mild baseline pain	6 (29)
Moderate baseline pain	91% < 12 (57)
Severe baseline pain	3 (14)
Partial	20 (44)
Mild baseline pain	6 (30)
Moderate baseline pain	12 (60)
Severe baseline pain	2 (10)
No change	4 (9)
Mild baseline pain	1 (25)
Moderate baseline pain	3 (75)

- **52** patients with osteolytic lesions
- **1**996-2007
- Median dose 38 Gy
- □ Pain before RT : 45/53 (86.5%)
- Pain evaluated with 0-10 NRS score

Recalcification

Recalcification	Patients No. (%
Evaluable	42 (80,7)
Complete	16 (38,1)
Partial	50% (30,1) 5 (11,9)
Stable	18 (42,9)
Progression	3 (7,1)

Balducci et al. Strahlenther Oncol 2011

RT Dose

Fractionation regimens

B Gy in single fraction

20 Gy/5 fractions (4 Gy/die)

30 Gy/10 fractions (3 Gy/die)

37.5Gy/15 fractions (2.5 Gy/die)

40 Gy/20 fractions (2 Gy/die)

Effects of Radiotherapy in the treatment of multiple myeloma: a retrospective analysis of a Single Institution

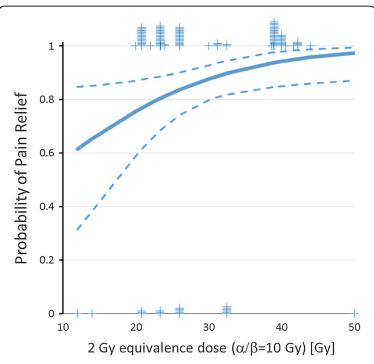


Figure 1 Binary logistic regression analysis of dose effects on pain relief ($\alpha/\beta = 10$ Gy, p =0.023. Dotted lines indicate the 95% confidence limits of the regression line. Tick marks indicate the number of events (0 or 1) at the respective dose.

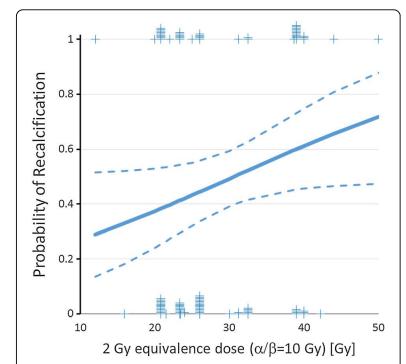
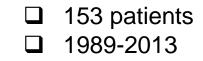
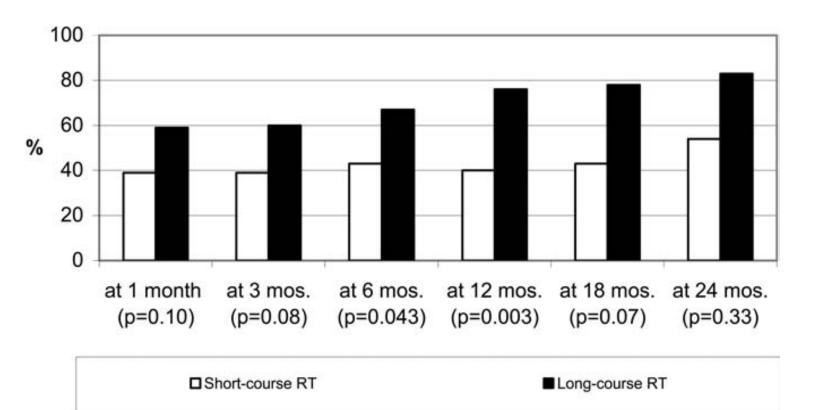



Figure 3 Binary logistic regression analysis of dose effects on recalcification ($\alpha/\beta = 10$ Gy, p = 0.048. Dotted lines indicate the 95% confidence limits of the regression line. Tick marks indicate the number of events (0 or 1) at the respective dose.

RT Dose

Higher total biological RT dose were associated with:


- Better pain relief (**≥30 Gy**);
- Better recalcification (≥40 Gy)

Matuschek et al Radiat Oncol 2015

SHORT-COURSE RADIOTHERAPY IS NOT OPTIMAL FOR SPINAL CORD COMPRESSION DUE TO MYELOMA

IMPROVEMENT OF MOTOR FUNCTION AFTER RADIOTHERAPY

172 patients 1994-2004

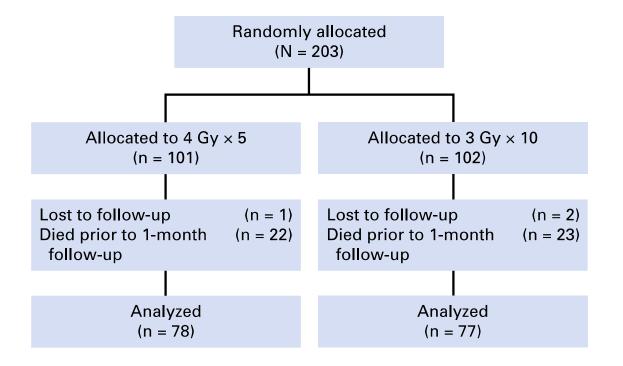
Short course RT:

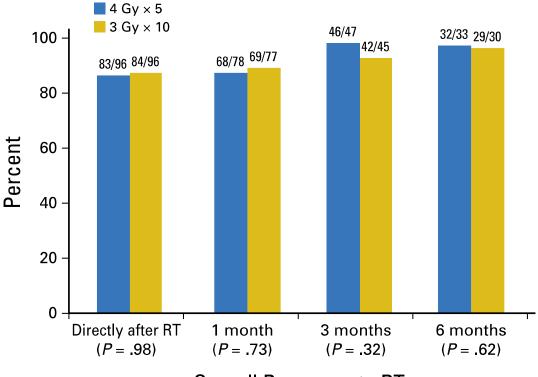
• 8 Gy in single fraction

RT Dose

• 20 Gy/5 fractions

□ Long course RT:


- 30 Gy/10 fractions
- 37.5 Gy/15 fractions
- 40 Gy/20 fractions



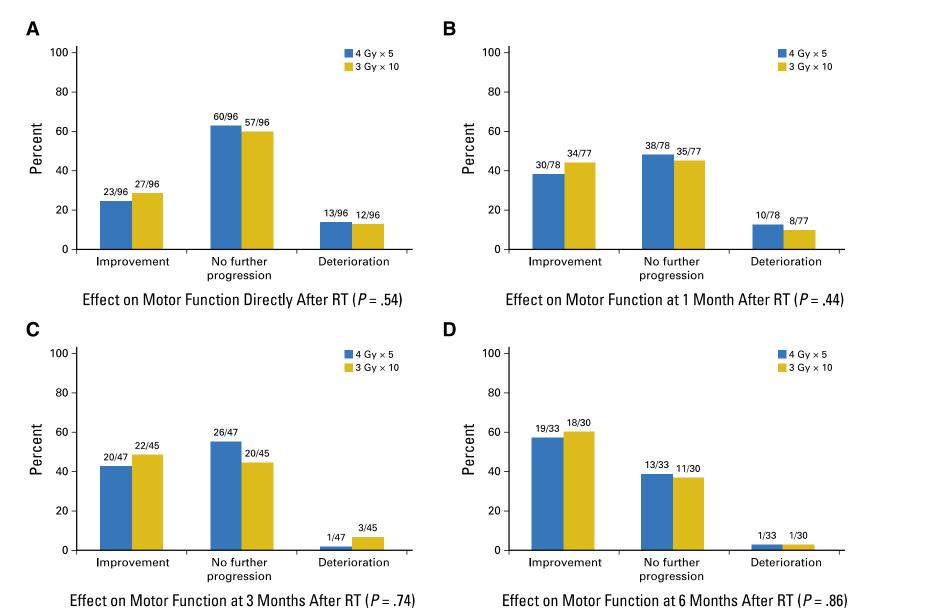
Rades et al IJROBP 2006;64(5):1452-1457

JOURNAL OF CLINICAL ONCOLOGY

Radiotherapy With 4 Gy \times 5 Versus 3 Gy \times 10 for Metastatic Epidural Spinal Cord Compression: Final Results of the SCORE-2 Trial (ARO 2009/01)

Overall Response to RT

JOURNAL OF CLINICAL ONCOLOGY

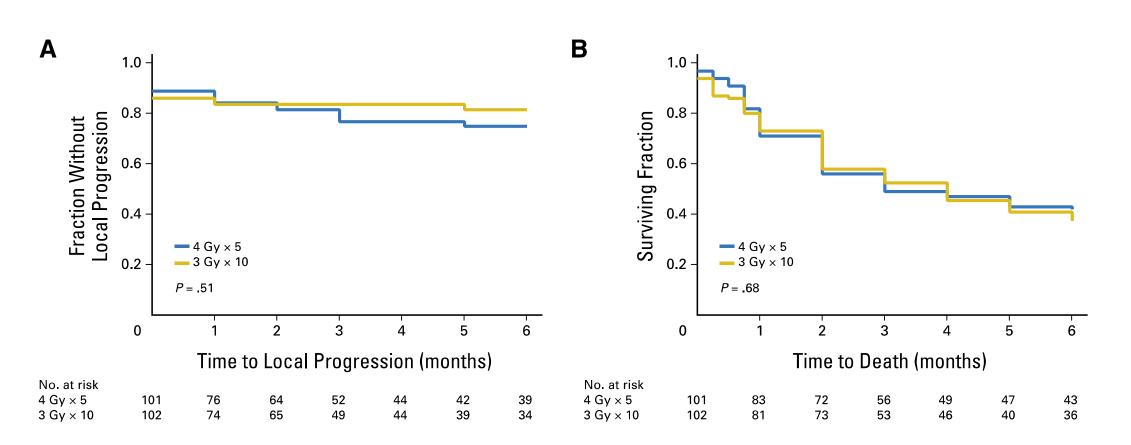

RT Dose

Radiotherapy With 4 Gy \times 5 Versus 3 Gy \times 10 for Metastatic Epidural Spinal Cord Compression: Final Results of the SCORE-2 Trial (ARO 2009/01)

Table 1. Distribution of the Three Stratification Factors and Additional Characteristics
--

Stratification Factors and Additional Characteristics	Patients, n (%)		
	4 Gy × 5	3 Gy × 10	Р
Stratification factor			
Ambulatory status before RT			
Ambulatory without aid (N = 52)	26 (25.7)	26 (25.5)	> .99
Ambulatory with aid (N = 65)	32 (31.7)	33 (32.4)	
Not ambulatory (N = 86)	43 (42.6)	43 (42.2)	
Time developing motor deficits before RT, days			
1-7 (N = 92)	46 (45.5)	46 (45.1)	> .99
8-14 (N = 53)	26 (25.7)	27 (26.5)	
> 14 (N = 58)	29 (28.7)	29 (28.4)	
Type of primary tumor			
Breast cancer (N = 32)	16 (15.8)	16 (15.7)	> .99
Prostate cancer (N = 32)	16 (15.8)	16 (15.7)	
Myeloma/lymphoma (N = 16)	8 (7.9)	8 (7.8)	
Lung cancer (N = 58)	29 (28.7)	29 (28.4)	
Other tumors (N = 65)	32 (31.7)	33 (32.4)	

RT Dose

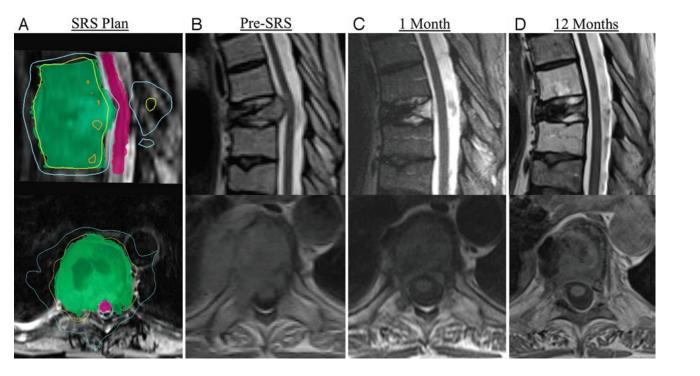

MOTOR FUNCTION

DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

JOURNAL OF CLINICAL ONCOLOGY

Radiotherapy With 4 Gy \times 5 Versus 3 Gy \times 10 for Metastatic Epidural Spinal Cord Compression: Final Results of the SCORE-2 Trial (ARO 2009/01)

RT Dose



DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Spine stereotactic radiosurgery for the treatment of multiple myeloma

Spinal SRS

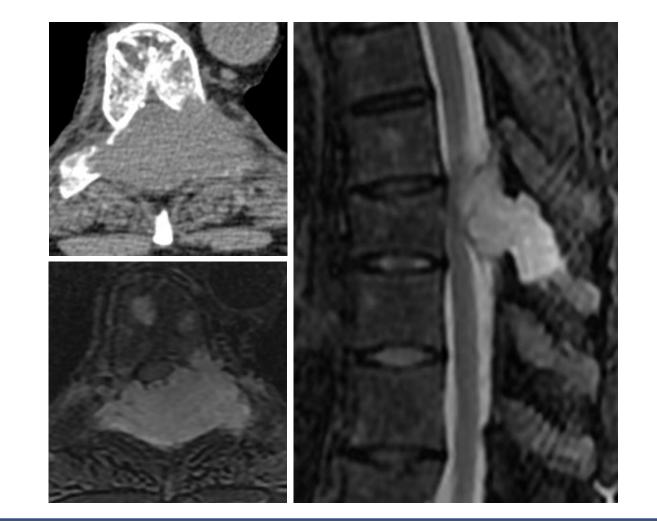
CLINICAL ARTICLE

- □ Largest series of myeloma lesions (56) treated with spine SRS (14-16 Gy in single fraction)
- Rapid and durable symptomatic response (median time to pain relief: 1.6 months)
- □ LC @12 months: 85%
- □ SRS should be considered for patients with:
 - ✓ Limited spinal disease
 - ✓ Recurrent disease after EBRT
 - ✓ Requirement for "marrow sparing" RT

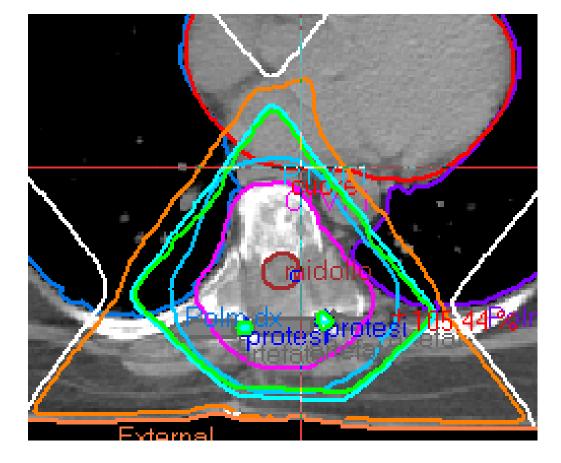
Miller JA, et al. J. Neurosurg Spine 2016

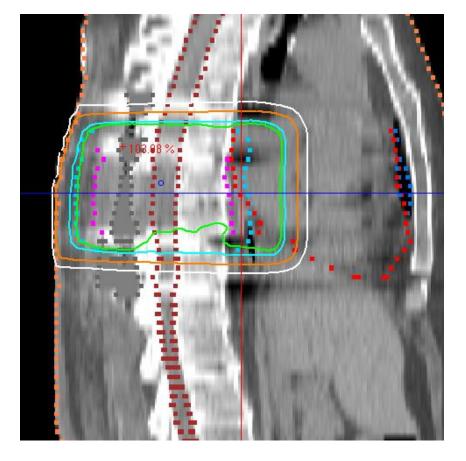
RT Dose – Summary

□ When main goal is **pain relief: hypofractionated regimen** with a total dose of 8 to 30 Gy (3 to 8 Gy/day)

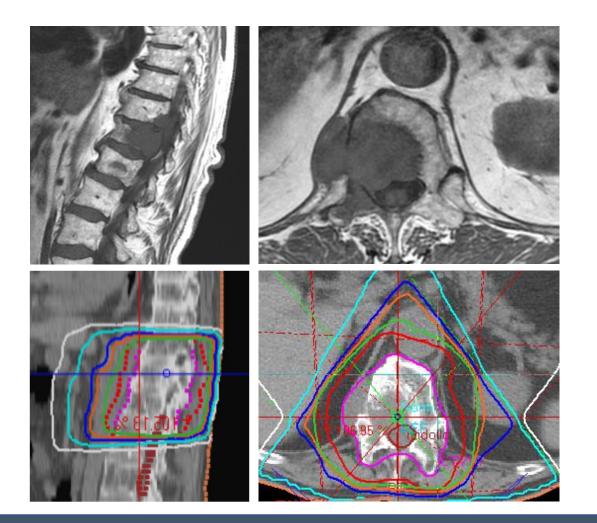

□ 8 Gy is preferred for bone disease in patients with poor prospects of survival

- For epidural disease with spinal cord compression or bulky mass, when durable local control is desired:
 30 Gy/10 fractions or 20 Gy/5 fractions are equally effective
- Conventional fractionation (20-30 Gy in 2 Gy/day) may be preferred if RT volumes are large or for retreatment
- Spinal radiosurgery may represent an interesting opportunity for highly selected patients (e.g. reirradiation, small lesions without spinal cord compression)




Example of Palliative RT for Multiple Myeloma (#1)

- □ 53 years old patient
- Dorsal pain + bilateral leg weakness and paresthesia
- MRI and CT: multiple osteolytic lesions; Spinal cord compression at D8 level
- □ Laminectomy (D8) + vertebral stabilization and histological sampling → Multiple Myeloma.

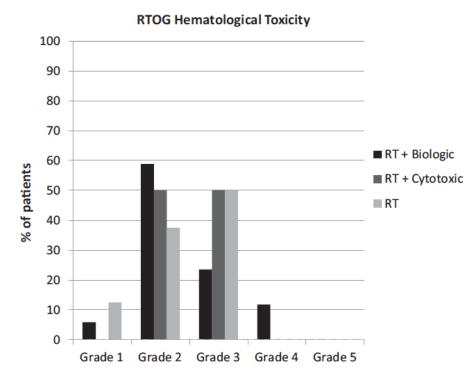

Tumor Board:

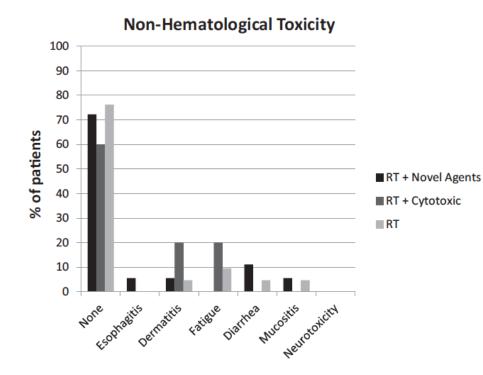
- □ Palliative RT on D8 followed by
- □ Chemotherapy + ASCT

RT dose: 30 Gy/10 fractions

Example of Palliative RT for Multiple Myeloma (#1)

□ 72 years old male


- Known history of MM, already treated with multiple lines of chemotherapy
- Osteolytic lesion at D11-D12, determining spinal cord compression, right leg weakness and severe dorsal pain.
- □ RT dose: 20 Gy/5 fractions
- During treatment neurologic improvement (dorsal pain disappeared and leg weakness significantly reduced)



Feasibility and Efficacy of Local Radiotherapy With Concurrent Novel Agents in Patients With Multiple Myeloma

Novel Agents

Shin SM et al. Clin Lymph, Myel & Leuk 2014

