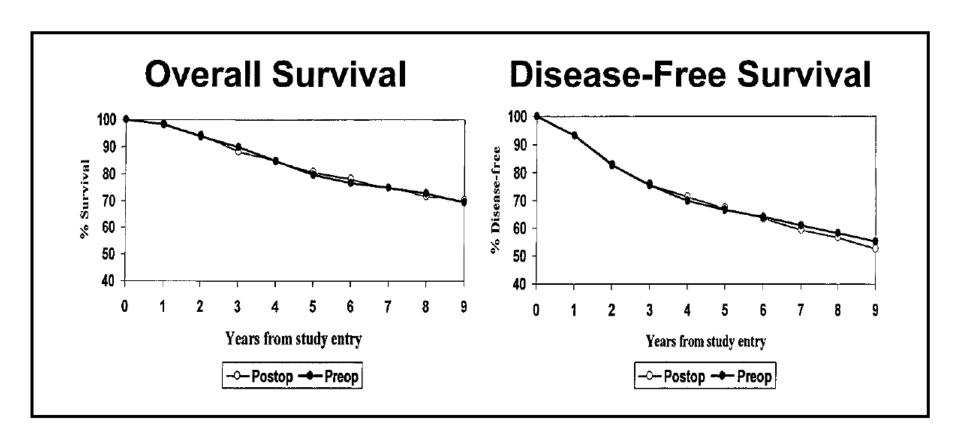


Terapia medica neoadiuvante

Unit of Investigative Clinical Oncology (INCO)
Fondazione del Piemonte per l'Oncologia
Candiolo Cancer Institute (IRCCs)

Question number 1

□ Chemotherapy before or after surgery: any difference in outcomes?

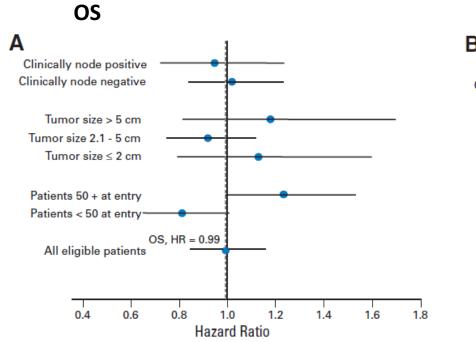


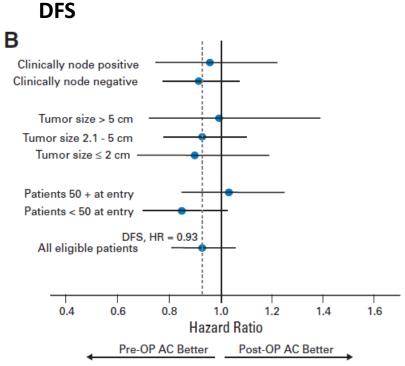
AC X 4 before or after surgery in patients with operable breast cancer: NSABP B-18

Table 1. Characteristics of Eligible Patients

Eligibility and Characteristics at	Treatment Group			
Randomization	Postoperative	Preoperative		
Eligibility (no.)				
Randomized	<i>7</i> 63	<i>7</i> 60		
Eligible	759	747		
Characteristics (%)				
Age, years				
≤ 49	52	51		
≥ 50	48	49		
Nodal status (clinical)				
Negative	74	74		
Positive	26	26		
Breast cancer (clinical size, cm)				
≤ 2.0	27	29		
2.1-5.0	59	58		
≥ 5.1	13	13		
Not reported	< 1	0		

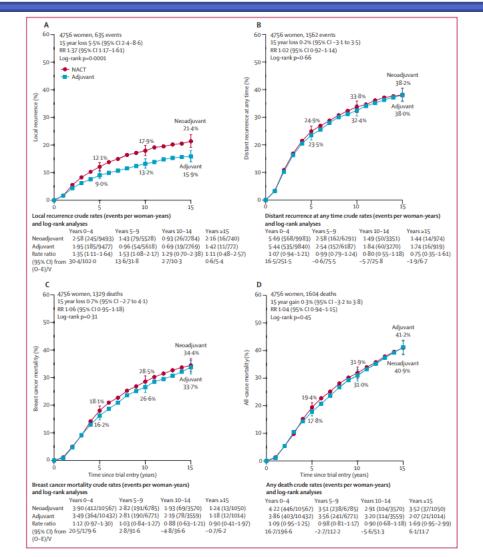
9-year follow-up of the NSABP B-18 study




Ipsilateral Breast Cancer Recurrence according to treatment and co-variates

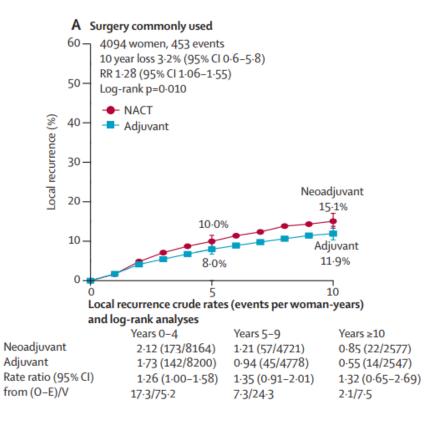
	Treatment group				
Clinical factor	Postoperative AC, % of patients with IBTR	Preoperative AC, % of patients with IBTR	Total, % of patients with IBTR		
Age, y					
≤ 49	10.7	15.2	13.1		
≥50	4.2	6.1	5.2		
Clinical tumor size					
<3 cm	6.6	11.6	9.3		
≥3 cm	8.3	10.1	9.3		
Clinical and pathologic tumor response					
cCR*	N/A	9.8			
pCR	N/A	6.7			
pINV	N/A	11.5			
cPR	N/A	11.8			
cNR (cSD and cPD)	N/A	13.0			
Procedure after preoperative chemotherapy					
Lumpectomy vs. planned					
mastectomy	N/A	15.9			
Lumpectomy as planned	N/A	9.9			

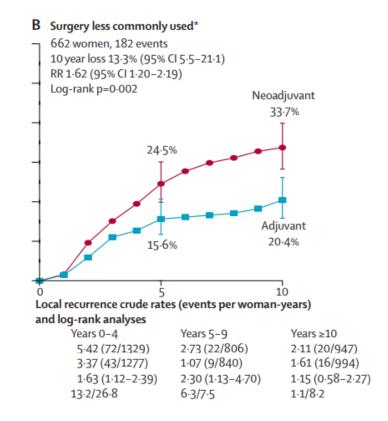
Further update in 2008

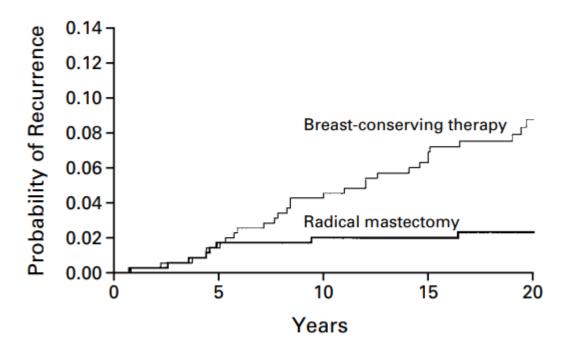


Patient-level meta-analysis

- Ten randomized trials of neoadj vs adj chemotherapy
- □ 4756 women randomized between 1983 and 2002
- Median follow-up 9y (IQR 5-14)
- Most patients treated with antrhacycline/non taxane regimens
- Only one trial with anthracycline and taxane
- No trials included trastuzumab
- Some trials allowed omission of surgery in cCR patients




Individual patient data metaanalysis


Increase in local recurrence also after excluding studies allowing surgery avoidance

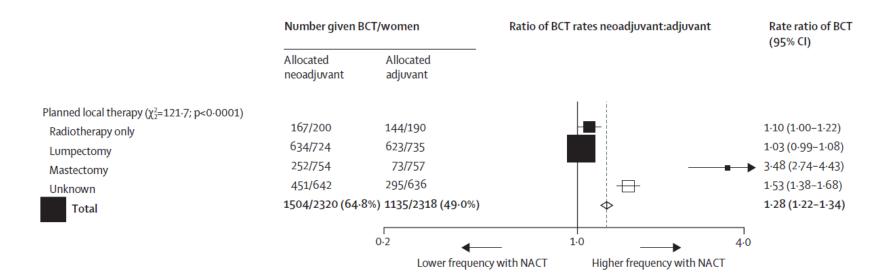
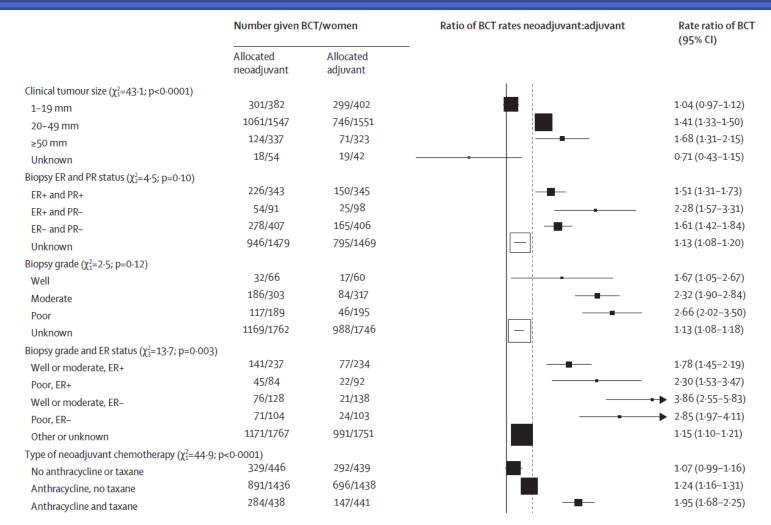
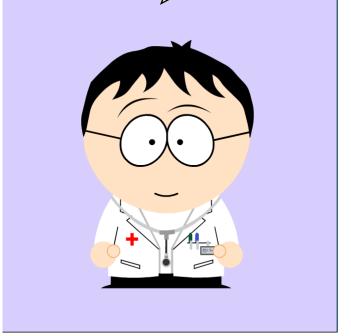

Ipsilateral recurrence rates are not exactly equal in patients randomized to mastectomy vs BCS + RT

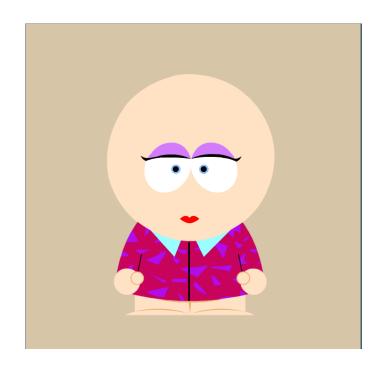
Figure 1. Crude Cumulative Incidence of Local Recurrences after Radical Mastectomy and Recurrences in the Same Breast after Breast-Conserving Therapy.



To what extent is BCS increased by the use of neoadjuvant chemotherapy?

To what extent is BCS increased by the use of neoadjuvant chemotherapy in subgroups?





Investigative Clinical Oncology

pCR; to what extent should we pursue it?

Great, you achieved pCR and this is a very good thing. You'll do just fine!

Does pCR predict better outcome compared with no-pCR?

Responder analysis (11955 patients, 12 clinical trials)

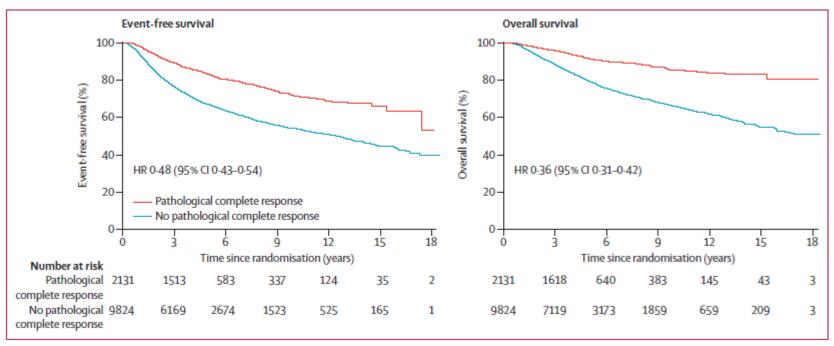


Figure 2: Associations between pathological complete response and event-free survival and overall survival

Which is the definition of pCR that best correlates with outcome?

Responder analysis (11955 patients, 12 clinical trials)

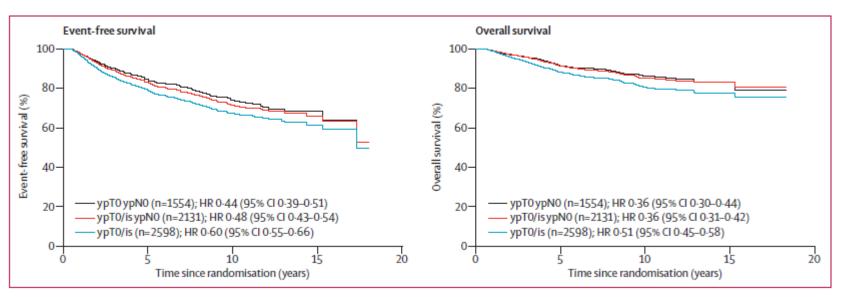
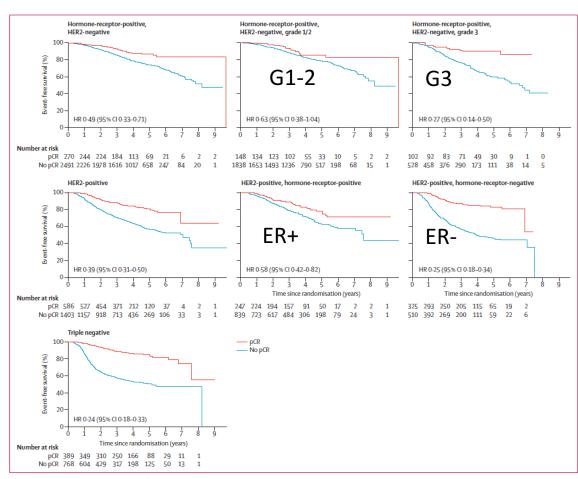


Figure 3: Associations between three definitions of pathological complete response and event-free survival and overall survival



Does pCR predict better outcome in different biologic subsets of breast cancer?

ER+, HER2-

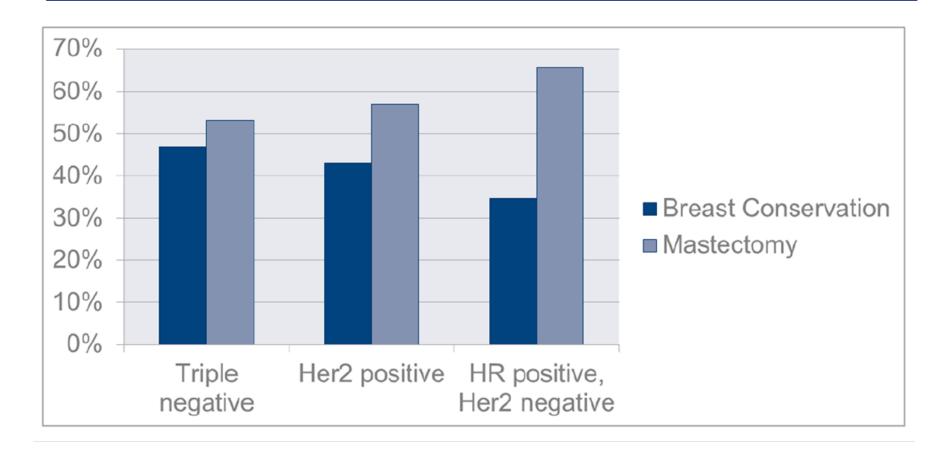
HER2+

Triple Negative

pCR occurs, overall in a minority of breast cancer patients

		Non-	Patients	Patients	pCR rate	Odds	-
		evaluable	with pCR	with no	(evaluable	Ratios	
		patients	(evaluable	pCR	patients)	(99% CI) ^a	
			patients)	(evaluable			
				patients)			
	N	N	N	N	(%)		
Luminal A-like	515	19	37	459	(7.5)	1.00	-
Luminal B-like	154	7	22	125	(15.0)	2.18	
(HER2 negative)						(1.04; 4.58)	
Luminal B-like	237	7	51	179	(22.2)	3.54	26% with THP
(HER2 positive)						(1.94; 6.45)	2070 With 1111
HER2 positive	128	10	43	75	(36.4)	7.11	62% with THP
(non-luminal)						(3.67; 13.8)	
Triple negative	255	34	69	152	(31.2)	5.63	54% with carbo
• -						(3.16; 10.0)	
Total	1289	77	222	990	(18.3)	$(P < 0.001^{b})$	
							_

26%


Overall

EORTC 10994/BIG 1-00 phase III trial

Investigative Clinical Oncology

Does pCR predict for increased BCS probability?

Meta-analysis of the relationship between pCR rate and probability of BCS

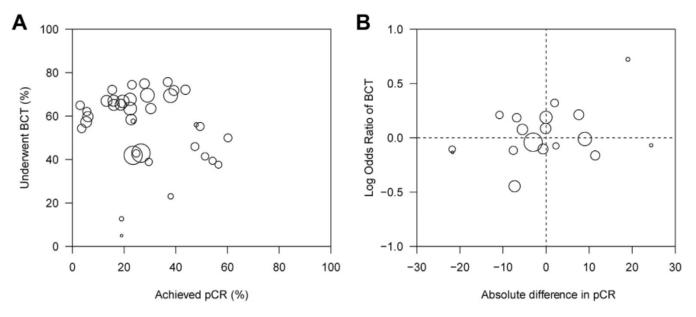
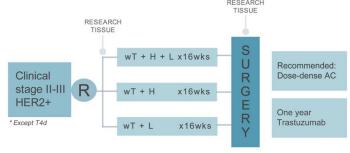



Fig. 3. (A) Scatterplot of the reported rate of patients who achieved pCR versus the rate who underwent breast-conserving therapy per study treatment arm. (B) Scatterplot of the absolute difference in pCR between arms and the log odds of BCT between arms in 18 pairwise contrasts of multi-arm trials. Point sizes are drawn proportional to number of patients in the paired arms. No statistically significant association was observed. pCR, pathological complete response.

Combined analysis of the CALGB C40601 and C40603

C40601: Schema

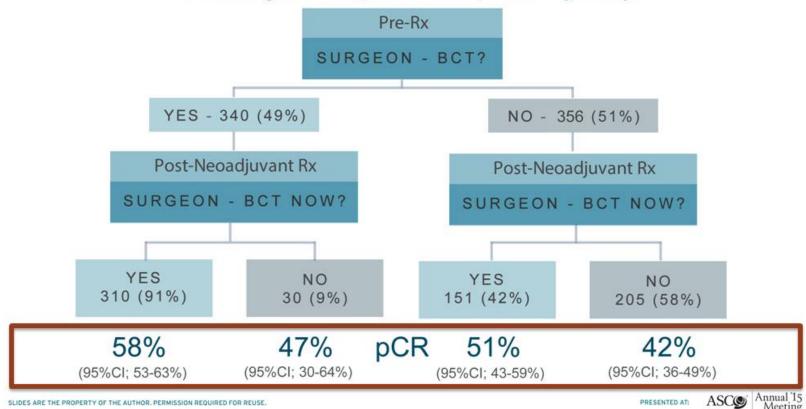
*wT = weekly paclitaxel, H = trastuzumab, L = lapatinib Primary endpoint: pCR breast (*ASCO 2013)

ES ARE THE PROPERTY OF THE AUTHOR, PERMISSION REQUIRED FOR REUSE.

C40603: Schema

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE

Primary endpoint: pCR breast (*SABC 2013)



PRESENTED AT: ASCO Annual 15 Meeting

Combined analysis: pCR and BCS-feasibility

Pathologic Complete Response (pCR)

What should be «state of the art» adjuvant chemotherapy in the current clinical practice?

- Luminal B tumors
 - > EC (either q21d or q14d) x 4 followed by qw paclitaxel
- HER2 positive tumors
 - ➤ EC (either q21d or q14d) x 4 followed by qw paclitaxel X 12 + Trastuzumab (and pertuzumab)*
 - Docetaxel-Carboplatinum + trastuzumab x 6 (and pertuzumab)*
- TNBC (regardless of BRCA status)
 - dd EC followed by qw paclitaxel 12 +/- carboplatinum (either AUC 6 q 3 wk or AUC 2 weekly**)

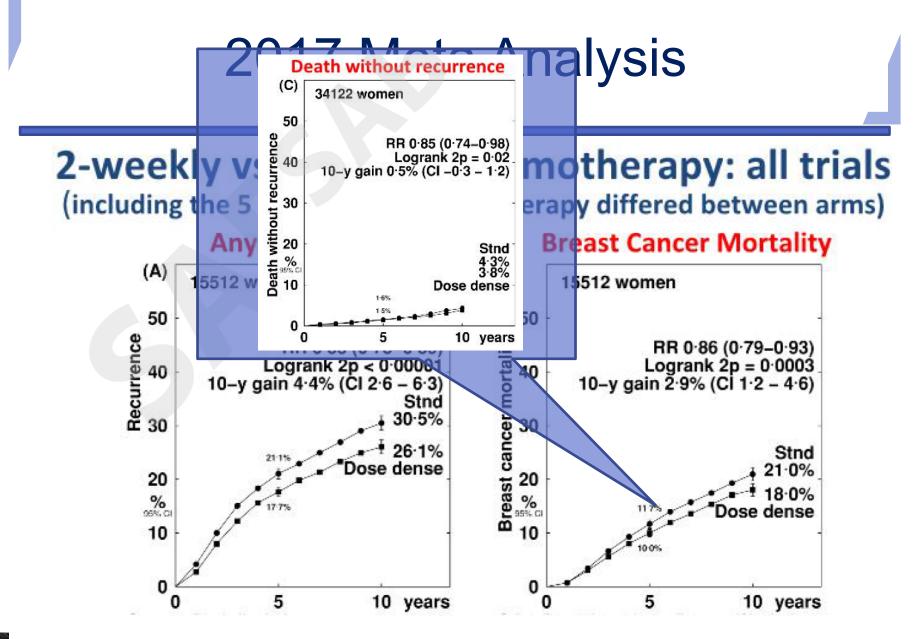
^{*}When available

^{**}No published studies are available with the weekly carboplatinum schedule

Dose dense chemotherapy: the Meta-analysis

Dose-dense (2-weekly) vs standard (3-weekly)

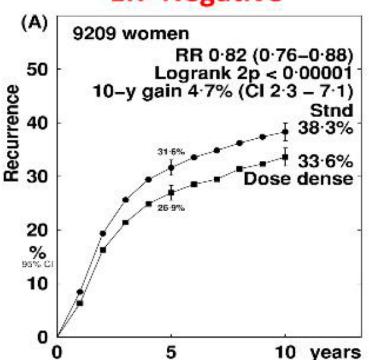
- Same chemotherapy drugs and doses: 7 trials, n=10,004
- Some differences in chemotherapy: 5 trials, n=5,508

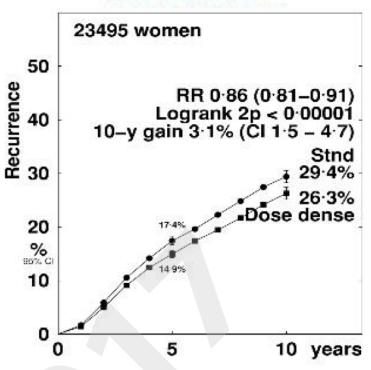

Sequential (3-weekly) vs concurrent (3-weekly)

- Same drugs in each group: 5 trials, n=9,644
- Some differences in drugs used: 1 trial, n=1,384

Sequential (2-weekly) vs concurrent (3-weekly)

Some differences in drugs used: 6 trials, n=6,532

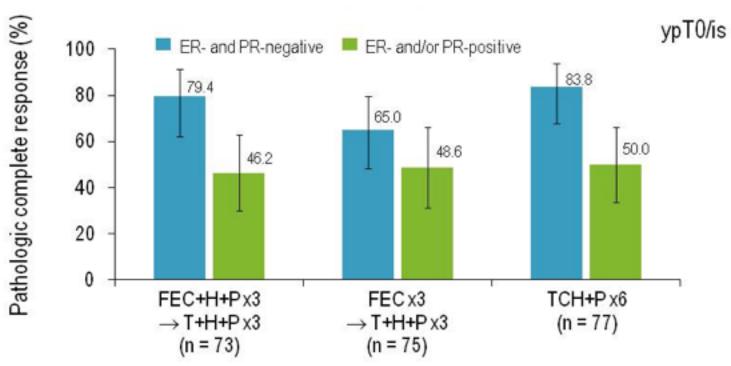



No differences according to ER status

Pooled Analysis: recurrence by ER status

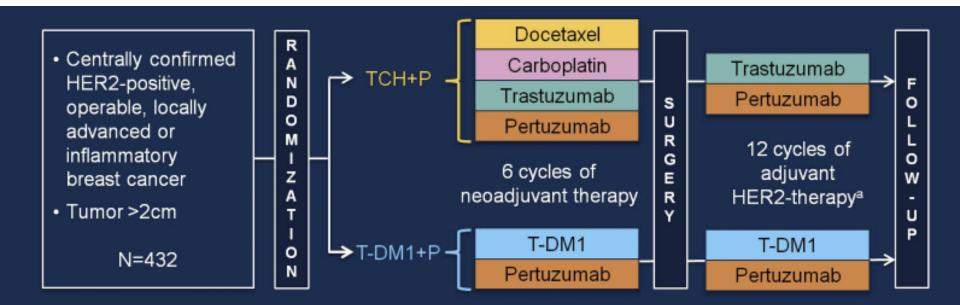
ER - Positive

Gray SABCS 2017

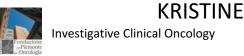

Is there an "optimal" or "preferred" dosedense regimen for high-risk patients?

- \square q3wAC X 4 \rightarrow q3wPacli X 4 \triangleright q3w AC X 4
 - NSABP B-28 and CALGB 9344
- □ ddA(E)C X 4 \rightarrow ddPacli X 4 > q3wA(E)C X 4 \rightarrow q3wPacli X 4
 - > C9741, GIM2
- □ q3wAC X 4→wPacli X 12 > q3wAC X 4 →q3wPacli X 4
 - > E1119

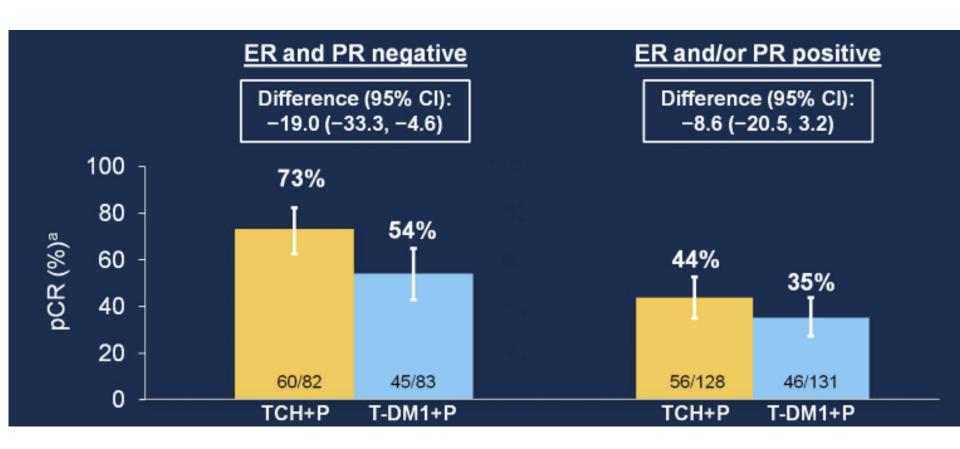
q2wAC or EC X 4 → wPaclitaxel X 12


HER2-positive disease; the TRYPHAENA study

ER, estrogen receptor; FEC, 5-fluorouracil, epirubicin, cyclophosphamide; H, trastuzumab; P, pertuzumab; PR, progesterone receptor; T, docetaxel; TCH, docetaxel/carboplatin/trastuzumab Schneeweiss et al. *Ann Oncol* 2013;24:2278-84

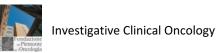


What about T-DM1 with pertuzumab?



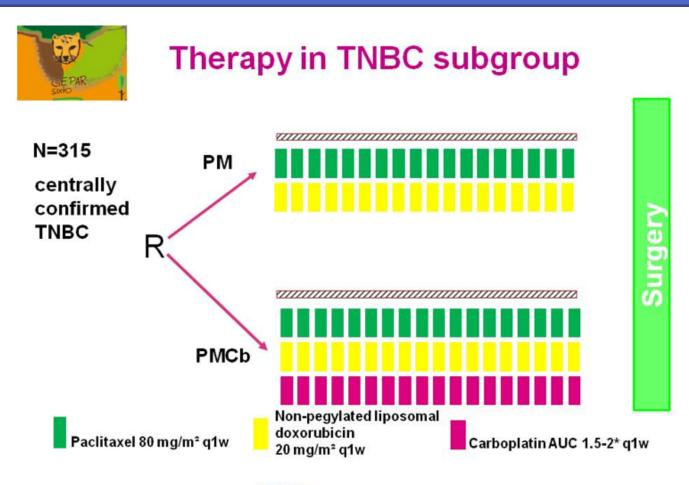
Primary endpoint: pCR by local assessment (ypT0/is, ypN0)

• Stratification factors: local HR status, geographic location, and clinical stage at presentation


pCR rates

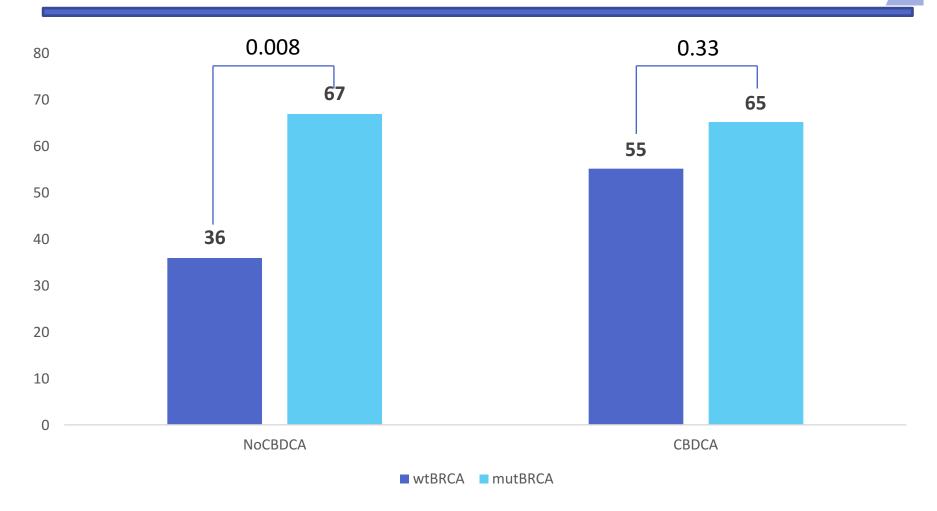
What about TNBC and carboplatin?

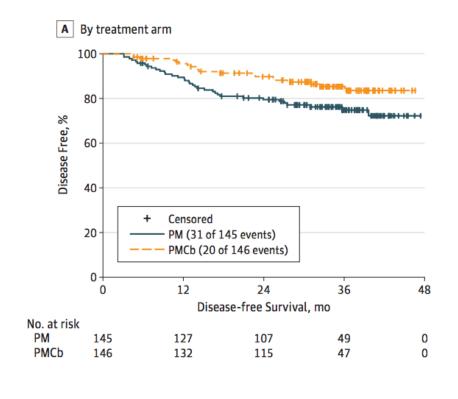
Trial	N randomized	pCR Chemo alone	pCR Chemo+Carbopl atin
CALGB 40603	218	39%	49%
GeparSixto	315	37.9%	58.7%
GEICAM 2006-03	94	35%	30%

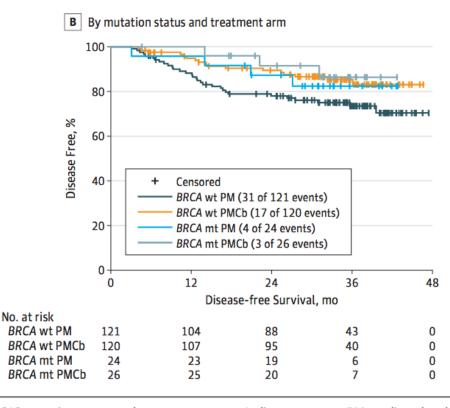


Meta-analysis

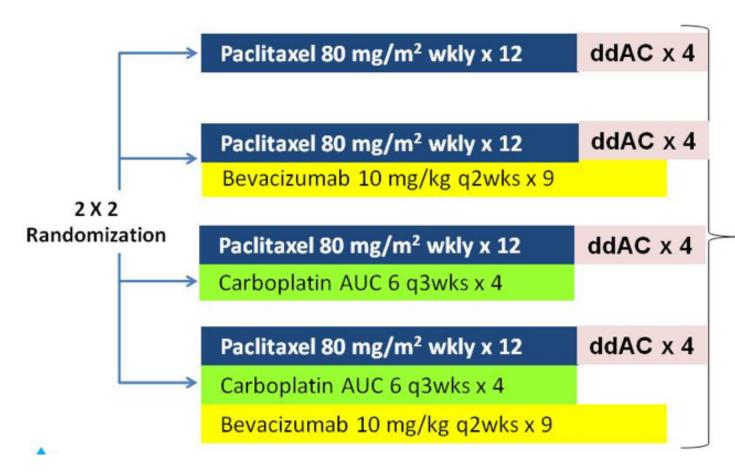
	Trial name	Year			OR (95% CI)	Platinum	Controls
	GEICAM/2006-03	2012		H	0.97 (0.40, 2.35)	14/47	14/46
	GeparSixto GBG66	2014		_=	1.78 (1.14, 2.78)	90/158	67/157
	CALGB 40603 Alliance	2014			1.68 (1.15, 2.45)	119/221	87/212
	UMIN000003355	2014		<u> </u>	4.60 (1.72, 12.27)	23/37	10/38
	Aguilar Martinez et al.	2015	-		2.38 (0.85, 6.64)	18/30	12/31
	NCT01276769	2016		-	3.88 (1.35, 11.15)	17/44	6/43
	GeparOcto GBG84	2017	_	-	1.14 (0.77, 1.68)	105/203	97/200
	WSG-ADAPT	2018			2.11 (1.33, 3.35)	67/146	51/178
	BrighTNess	2018		-	3.01 (1.90, 4.77)	92/160	49/158
	Random effect (I-squared	I = 56.3%, P= 0.019)	\Diamond	1.96 (1.46, 2.62)	545/1046	393/1063
-		.0815 Favors C	Controls	l Favors Platinum	12.3 Poggio e	et al, Ann	Oncol 201


TNBC: addition of carboplatinum

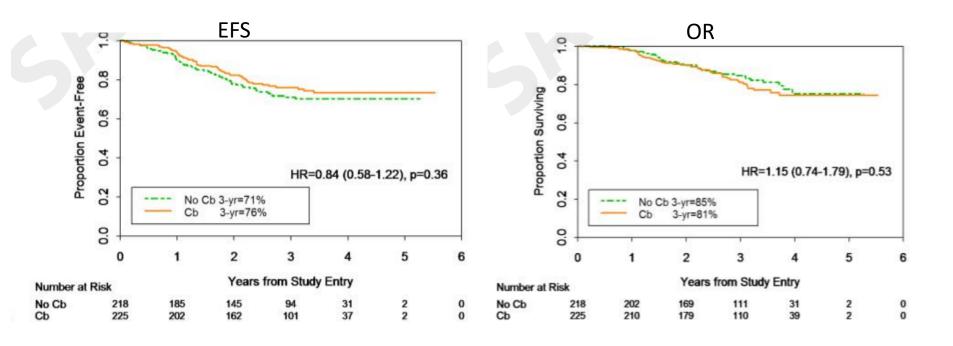

TNBC: N Bevacizumab 15 mg/kg q3w


Benefit of Carboplatinum according to BRCA status; pCR (ypT0/ypN0)

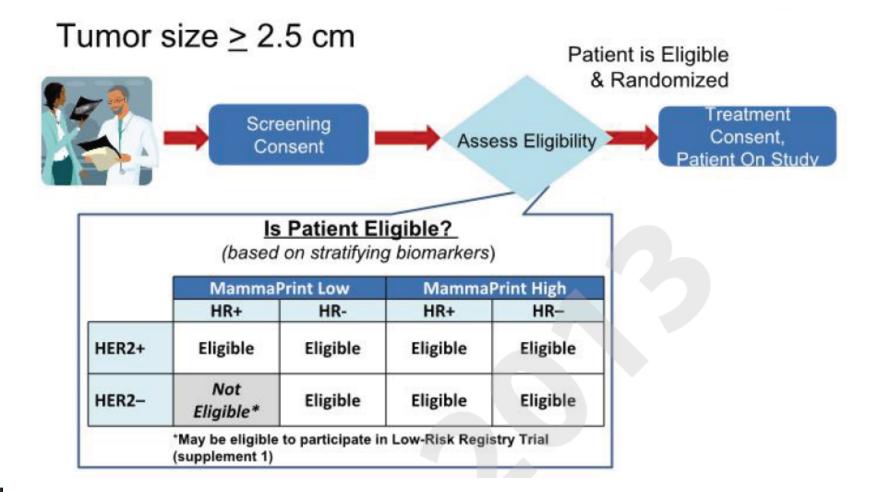
Benefit of Carboplatinum according to BRCA status



A, Disease-free survival by treatment arm. B, Disease-free survival by *BRCA1* and *BRCA2* mutation status and treatment arm. mt Indicates mutant; PM, paclitaxel and myocet; PMCb, paclitaxel, myocet, and carboplatin; and wt, wild-type.



CALGB 40603



EFS and OS analysis

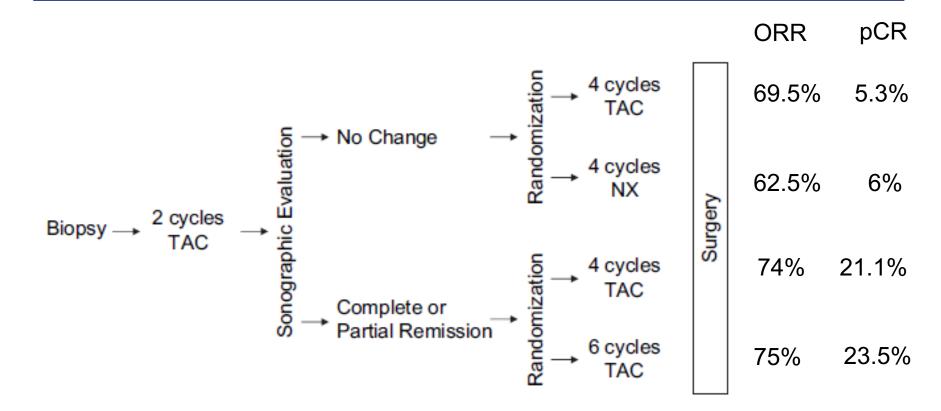
Who are «pathology-wise» the optimal candidates to neoadjuvant chemotherapy?

Could we tailor treatment based on early evaluation of response?

Treatment tailoring based on clinical predictors of pCR

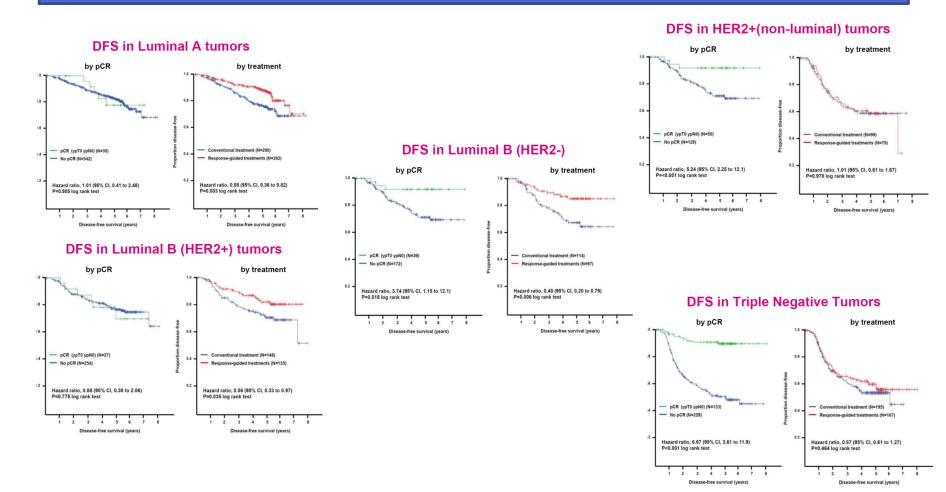
Trial	Initial Regimen	Evaluation of response	Salvage Regimen vs Conventional	pCR in Switch	BCS rates
TAX301	CVAP X 4	UICC (calliper)	Docetaxel x 4	2%	-
			-	-	-
GeparTrio	TAC x 2	Ultrasonography	NX x 4	6.0%	59.8%
			TAC x 4	5.3%	57.3%
GeparQuinto	EC x 4	Imaging (US, MRI, Mammo)	wP x 12 +Everolimus	3.6%	54.4%
			wP x 12	5.6%	61.9%

J Clin Oncol 2002; 20, 1456 J Natl Cancer Inst 2008; 100;542 Eur J Cancer 2013; 49; 2284 CVAP; cyclophosphamide, Vincristine, Doxorubicin, Prednisone

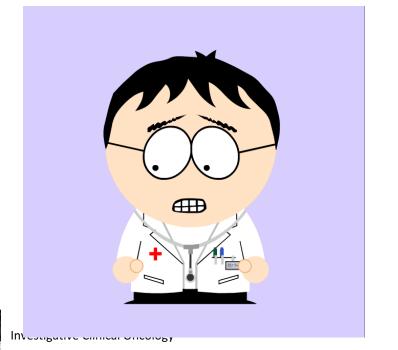

TAC; docetaxel, doxorubicin, cyclophosphamide

NX; vinorelbine, capecitabine

wP; weekly paclitaxel



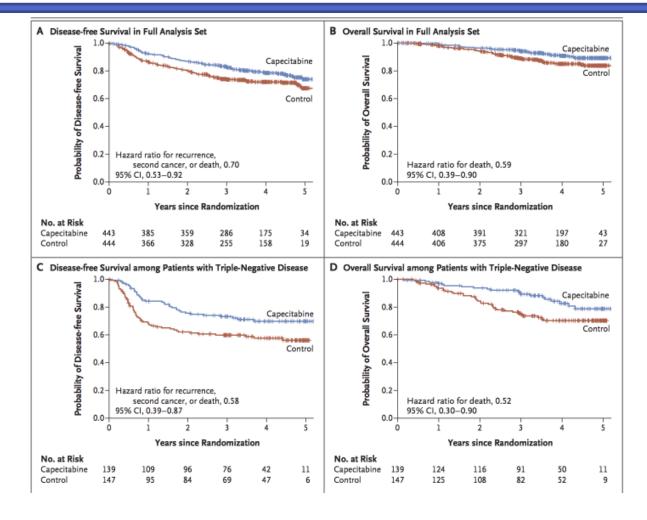
Adaptive chemotherapy according to response to the initial 2 cycles of neoadjuvant chemotherapy


Response-guided chemotherapy effective in some subgroups of breast cancer patients

How could we deal with failure to achieve pCR?

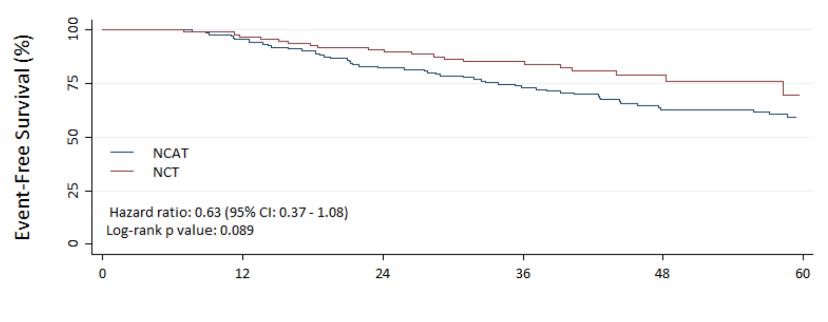
Well, ehm, your tumor shrank...but, just a little bit, buth..ehm, no pCR and, ...well, I will see!

On average:


8-9 out of 10 pts with ER positive disease

5-7 out of 10 patients with triple negative disease

4-5 out of 10 patients with HER2 positive disease


Adjuvant capecitabine in patients with residual disease after NACT

Prognosis of patients receiving NACT and neoadjuvant vs adjuvant trastuzumab

Time from Diagnosis (Months)

Effect confined to patients with ER- tumors.

Earlier initiation of trastuzumab is associated with better prognosis

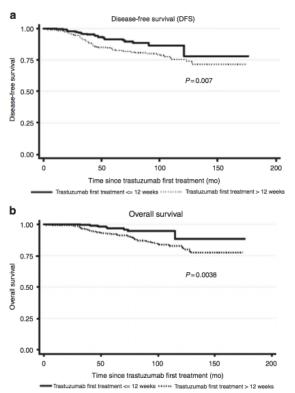
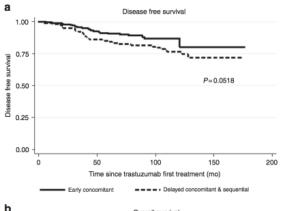



Fig. 3 DFS (a) and OS (b) of patients with a TFT (time to first trastuzumab) \leq 12 weeks (N= 247) compared with those with TFT > 12 weeks (N= 244)

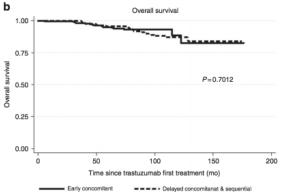
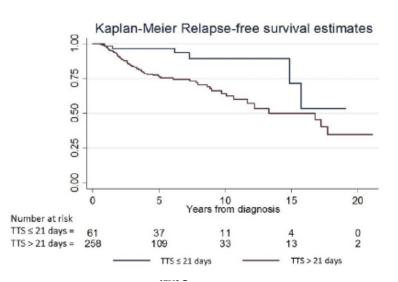
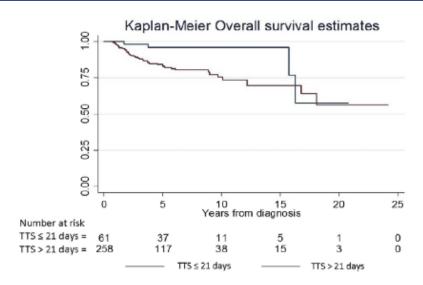


Fig. 4 DFS (a) and OS (b) of patients treated with *early concomitant* regimens (e.g., TCH and "TCH-like") compared with those treated with *delayed concomitant* (e.g., AC-TH) and *sequential* regimens. TCH (Docetaxel/Carboplatin/Trastuzumab), AC-TH (Doxorubicin/Cyclophosphamide-Docetaxel/Trastuzumab)

Dose-dense chemotherapy


Models of tumour cytoreduction and regrowth following conventional, dose-escalated and dose-dense chemotherapy*



Timing of surgery after completion of neoadjuvant chemotherapy and outcomes

Univariate analysis and survival estimates for Relapse Free Survival according to TTS and known prognostic factors.

	Relapse Free Survival							
	5-Years estimate (95% CI)	10-Years estimate (95% CI)	15-Years estimate (95% CI)	HR	95% CI	p		
TTS								
$TTS \le 21 \text{ days}$	0.96 (0.86-0.99)	0.89 (0.72-0.96)	0.71 (0.27-0.91)	1	1.35 - 7.17	0.008		
TTS > 21 days	0.76 (0.70-0.81)	0.64 (0.54-0.72)	0.50 (0.36-0.62)	3.11				
BC subtypes								
Hormone-receptor positive	0.83 (0.75-0.88)	0.66 (0.54-0.76)	0.53 (0.38-0.67)	1				
HER2 positive	0.78 (0.67-0.85)	0.73 (0.61-0.82)	0.73 (0.61-0.82)	1.20	0.70 - 2.04	0.5		
TNBC	0.78 (0.64-0.86)	0.78 (0.64-0.86)	0.46 (0.13-0.74)	1.11	0.60 - 2.02	0.7		
Clinical stage								
I	0.83 (0.27-0.97)	0.83 (0.27-0.97)	0.83 (0.27-0.97)	1				
II	0.83 (0.77-0.88)	0.69 (0.59-0.77)	0.62 (0.48-0.74)	1.59	0.21 - 11.06	0.6		
III	0.69 (0.56-0.79)	0.64 (0.49-0.75)	0.30 (0.09-0.54)	3.19	0.42 - 23.77	0.2		
pCR								
Yes	0.92 (0.81-0.97)	0.92 (0.81-0.97)	0.92 (0.81-0.97)	1	0.09 - 0.71	0.009		
No	0.77 (0.71-0.82)	0.64 (0.55-0.72)	0.49 (0.36-0.61)	0.25				

