	AREA TEMATICA	PROGRAMMA			
P.O. MOLINETTE	Oncologica	1º giorno			
	ετηλι ττα/	modello di rete (O. Bertetto) 9.30-11.00 Il rischio di tossicità riguardo a:			
Evento residenziale	TINALITA	- terapie oncologiche (M. Mistrangelo) - terapie ematologiche (P. Pregno) - trattamenti radianti (M. Levis)			
Il Paziente oncologico a					
ricohio di toccioità					

cardiovascolare				
	cardiaca nel paziente oncologico	il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo)		
SEDE DEL CORSO		2º giorno		
Torino, Via Rosmini 4/A terzo piano	ARTICOLAZIONE	9.00-13.00 Suddivisione dei partecipanti in gruppi di lavoro con gestione casi clinici supportati da un loador (M. Giorgi A. Faya P.		
	Il Corso si articola in formula mista	Lusardi E Colotti Moia, A. Bonzano, A. Milan, I.		
Evento organizzato con il pat A.R.C.A. Mauro GORG				
Corso accreditato s Sistema ECM Regione Pie COD. 20492 - Crediti calco CITTA' della SALUTE e della SCIENZA di TORINO con raccomandazioni final				
		16.30-17.00 Valutazione		

CARDIO-ONCO(EMATO)LOGIA

Una nuova branca della Cardiologia che studia:

- Ia cardiotossicità provocata da terapie antitumorali (CHTh e RXTh) ed ematologiche
- Ia possibilità di diagnosticarla precocemente e a livello subclinico

strategie di cardioprotezione

fino a pochi anni fa i punti di contatto tra Cardiologi e Oncologi (ed Ematologi) erano assai scarsi: il Malato di tumore era considerato un malato con poche speranze e aspettativa di vita di pochi mesi

CARDIONCOLOGIA: Cosa abbiamo imparato nel corso degli anni?

Dose cumulativa di doxorubicina e insorgenza di CHF

3% at 400 mg/m², 7% at 550 mg/m², 18% at 700 mg/m²

Von Hoff DD et al. Ann Intern Med 1979; 91: 710-7

Early Assessment of Doxorubicin Cardiotoxicity

94% Antimyos POS

Subclinical <u>Late</u> Cardiomyopathy (CMP) after Doxorubicin Therapy for Lymphoma in Adults. J Clin Oncol. 2004:22:1864 Risultati Discussione 1. Basse dosi di Dox. 2. Studio retrospettivo 68% 11 anni di F.U. 7 anni di F.U.

Un po' di storia... CTX da DOXORUBICINA a BASSI DOSAGGI

TOSSICITÀ ANCHE A BASSI DOSAGGI

- 240-300 mg/m²:
 - EF > 55%...

★...ma Scinti Ac Antimiosina ⊕ nel 94% dei Pts

Carioni, J Nucl Med 1995

TOSSICITÀ ANCHE TARDIVA

• Follow Up a 11 aa (analisi retrospettiva):

★ significativa riduzione EF (< 40%) nel 32 %

J Clin Oncologic 2004

Cosa abbiamo imparato?

 Il cancro è malattia sociale: in Europa 1 persona su 4 manifesta un tumore nel corso della vita

- L'allungamento della vita media aumenta il rischio di concomitanza tra malattie cardiovascolari e cancro
- Maggior efficacia sia delle terapie cardiologiche sia di quelle oncoematologiche —> miglior sopravvivenza
- Maggior aggressività delle terapie oncoematologiche (spesso reiterate) —> aumentato rischio di danni iatrogeni all'apparato cardiocircolatorio

Cosa abbiamo imparato?

- La CTX è un fenomeno destinato ad espandersi :
 - -aumento del n° di nuove diagnosi tumore annuali
 - -ma anche aumento del n° PTs stabilizzati
 - -aumento aspettativa di vita
 - -per molti di essi nuovi cicli di CHT nel corso degli anni
 - ricorso a terapie antitumorali multiple, combinate e ripetute, sempre più aggressive e potenzialmente cardiotossiche

- 1. Eliminare la malattia
- 2. CHT NEOADIUVANTE: ridurre il volume della massa tumorale prima di un'operazione o RXTh
- 3. CHT ADIUVANTE: prevenire la recidiva dopo un intervento chirurgico o RXTh, eliminando cells tumorali staccate dal tumore e diffuse in altre parti del corpo, pur senza mts rilevabili
- 4. Prolungare la sopravvivenza o ritardare la progressione della malattia se non può essere eliminata
- 5. Migliorare i sintomi provocati dalla massa tumorale se non possibile asportazione chirurgica
- 6. Preparazione a **TX midollo osseo o stem cells**

NUOVI CASI DI TUMORI / ANNO:

- Italia : > 265.000
 - Europa: 2.000.000
- Mondo occidentale: 13.000.000

→ TRATTATI CON CHEMIO/RADIOTERAPIA: 60-80%

CARDIOTOSSICITÀ:

- Alterata funzionalità: 30 % (It = 80.000)
- Alterazione rilevante: 15 % (It = 40.000)
- Scompenso irreversibile: 1 % (It = 3.000)

Patient Discharges with Heart Failure Diagnosis at MD Anderson Cancer Center

Fiscal Year	Total Hospital Discharges	Heart Failure Discharge Diagnosis*	30-Day Re-admission
2012	26, 233	961 (3.6%)	381 (40%)
2013	27,137	1080 (3.9%)	394 (36%)

*Discharge diagnosis includes heart failure as principal and secondary diagnoses (ICD 425, 428)

Circa il 40% dei PTs dimessi con diagnosi di scompenso rientra in ospedale entro 40 giorni

La domanda imbarazzante del Cardiologo: che speranza di vita ha il Paziente?

La malattia CANCRO sta diventando una malattia CRONICO-**DEGENERATIVA** e pone problematiche NUOVE

SCENARI ODIERNI

- Pts con cardiopatia in atto che si ammalano di cancro
- Pts oncologici che manifestano malattie cardiocircolatorie
- Terapie oncologiche che causano cardiopatie
- Cardiopatie in lungosopravviventi e guariti
- Compatibilità tra terapie oncologiche e cardiologiche

More "Malignant" than Cancer?

Probabilità media di sopravvivenza a 5 anni dalla diagnosi nello scompenso cardiaco e nelle forme di cancro più frequenti nei due sessi

Eur J Heart Fail. 2001 Jun;3:315-22

CHF vs TUMORI: CURVE di SOPRAVVIVENZA

<u>UOMO</u>

- IMA = 65 %
- Vescica = 55 %
- Prostata = 40 %
 - Osso = 30 %
 - <u>CHF = 20 %</u>
- Polmone = 5 %

CHF vs TUMORI: CURVE di SOPRAVVIVENZA

More "malignant" than cancer ?

Five year survival following a first admission for heart failure

Stewart S., MacIntyre K., Hole DJ., Capewell S., McMurray JJ.

With the notable exception of lung cancer, <u>heart failure is "malignant" as many common</u> <u>types of cancer</u> and is associated with a comparable number of expected life-years old

(Eur. J. Heart Fail 2001)

Le curve di sopravvivenza per scompenso cardiaco sono peggiori di quelle della > parte dei tumori

LINEE GUIDA ONCOLOGICHE

INTERROMPERE C.T. se:

$V = F > 10n^{\%} + FF < 50\%$

<u>LIMITAZIONE</u> delle OPPORTUNITÀ della CHEMIOTERAPIA

STOP se: – ↓ EF > 10p[%] – EF < 40%

CARDIOTOSSICITÀ: CONSEGUENZE

- Condizionamento dell'oncologo nella scelta della terapia
- Riduzione della dose per evitare danni permanenti (riduzione dose = limitazione efficacia)
- Limitazione della potenziale efficacia della cura

VALUTAZIONE dell'EF: LIMITI

EF = perdita di cardiomiociti (danno irreversibile)

- EF normale anche con alterazioni cinesi segmentaria
- EF = indice tardivo, poco sensibile e poco specifico, con bassa accuratezza diagnostica e scarso potere predittivo

OBIETTIVO DEL CARDIONCOLOGO:

 ○ identificazione precoce dei Pts a rischio di sviluppare una disfunzione VS → personalizzazione del programma terapeutico cht e cardioprotezione
(= identificazione del danno in fase pre-clinica)

Classificazione AHA/ACC dello scompenso

TABLE 83-3 Cardiotoxicity of Antineoplastic Agents		
Implicated Agent	Comments	
Anthracyclines Doxorubicin or daunorubicin Mitoxantrone, idarubicin	CHF at cumulative doses above 450 mg/m², arrhythmias CHF, decreases in left ventricular ejection fraction	
Alkylating agents Cyclophosphamide Busulfan Cisplatin	Produces a hemorrhagic myopericarditis 1-2 weeks after marrow transplant doses Endocardial fibrosis Acute myocardial ischemia	
Other cytotoxics Paclitaxel (Taxol) 5-Fluorouracil Vincristine, vinblastine, vinorelbine (Navelbine)	Exacerbates anthracycline-associated CHF, bradycardia Angina/myocardial infarction Myocardial infarction	
Biologics Trastuzumab (Herceptin) Interferons Interleukin-2	Exacerbates anthracycline-associated CHF Exacerbates underlying cardiac disease Acute myocardial injury, ventricular arrhythmias, hypotension	
Hormones Megestrol (progestin) Estramustine (androgen antagonist [Emcyt]) Goserelin (gonadotropin-releasing hormone analog [Zoladex]) Diethylstilbestrol (estrogen) Toremifene (antiestrogen [Fareston]) Bicalutamide (antiandrogen [Casodex])	Cardiomyopathy Myocardial infarction, CHF Myocardial infarction, CHF Myocardial infarction Myocardial infarction Angina, CHF, myocardial infarction	
All-trans-retinoic acid	Myocardial dysfunction, heart failure, fever, shortness of breath, pleural and pericardial effusions, pulmonary infiltrates, and peripheral edema	
Hematopoietic growth factors Granulocyte macrophage colony-stimulating factor (sargramostim [Leukine])	Capillary leak syndrome	
Antiemetic Granisetron	Sinus bradycardia, atrioventricular block and increased PR interval or a Wenckebach block (Mobitz I).	
CHF = congestive heart failure.		

EFFETTI dei FARMACI ANTITUMORALI

- ANTRACICLINE (Doxo, Epi, Ida) \rightarrow CHF
- ANTIMETABOLITI (5 fluorouracile, capecitabina) → spasmo coronarico (S.C.A. = angina, infarto)
- AGENTI ALCHILANTI (ciclofosfamide, cisplatino) → CAD
- TAXANI (Taxolo, Paclitaxel, Docetaxel-Taxotere) → aritmie (spt bradicardia, BAV I-III), CHF
- AC MONOCLONALI^{*} (trastuzumab, rituximab) → CHF
- INIBITORI TIROSINCHINASI* (lapatinib, sunitinib, sorafenib): HP, CHF, aterosclerosi (arteriopatia periferica, CAD)
- INTERFERONE , INTELEUKINA→ aritmie, CHF
- ANTIESTROGENI (tamoxifene, in. aromatasi) → CHF
- ALCALOIDI VINCA (vinblastina, vinorelbina) → CHF

Bersagli Target Therapy (AC. MONOCLONALI e INIBITORI TKI)

Early Breast Cancer Therapy and Cardiovascular Injury

Lee W. Jones, PHD,* Mark J. Haykowsky, PHD,‡ Jonas J. Swartz, BS,* Pamela S. Douglas, MD,† John R. Mackey, MD§ (J Am Coll Cardiol 2007;50:1435-41)

Figure 1 The "Multiple-Hit" Hypothesis

A schematic representation describing the "multiple-hit" hypothesis. At diagnosis, a significant proportion of early breast cancer patients present with pre-existing or heightened cardiovascular disease (CVD) risk factors, which increase the risk of adjuvant therapy-associated cardiovascular injury. Independently, many adjuvant therapies used in breast cancer are associated with unique and varying degrees of direct adverse effects on the cardiovascular system. These direct effects occur in the context of concomitant lifestyle perturbations (indirect effects) that combine to reduce cardiovascular reserve. Collectively, these changes may leave the patient more susceptible to further cardiovascular insults and at higher risk of premature death due to cardiovascular mortality.

Figura 2.1 Teoria degli stress multipli. Secondo tale teoria, il danno da antracicline può rimanere asintomatico fino a che non si verificano, anche a distanza di anni, eventi stressogeni che possono determinare scompenso (Hearth Failure, HF)

INTERAZIONE TRA AC E FARMACI NON AC: UN CIRCOLO VIZIOSO

INTERAZIONE TRA AC E FARMACI NON AC: UN CIRCOLO VIZIOSO

CARDIOTOX: quadri morfologici

CARDIOTOSSICITÀ ACUTA

- Aritmie
- Alterazioni ECG
- Disfunzione VS

REVERSIBILI

- Pericardite
- Miocardite
- Infarto
- Morte improvvisa

GRAVI o FATALI

CARDIOTOSSICITÀ CRONICA

- Tachicardia sinusale
- Aritmie
- Versamento pericardico
- Disfunzione VS
- CMP
- CHF da bassa portata
- Dose dipendente (cumulativa doxo <550 mg/m², <330 mg/m² se RXTh)
- Sensibilità individuale
- <u>F.R.</u>: età, <u>pregressa RXTh</u>, cardiopatia, infezioni virali, th antitumorali multiple

"LATE ONSET" CMP

- Possibili candidati a TX cardiaco
- Fattori "triggeranti": sovraccarico circolatorio di liquidi, gravidanza, calo/aumento peso, chirurgia, anestesia generale, abuso alcool, cocaina, anemia, infezioni acute (virali), ipoproteinemia
- Caratteristiche diverse secondo l'età:
 - Bambini → CMP restrittiva
 - Adulti → CMP dilatativa (anche se non sono da escludere le forme restrittive)

Non solo scompenso !

Molecular Targeted Therapies

S. Ederhy et al. / Critical Reviews in Oncology/Hematology 80 (2011) 369-379

Fig. 1. Spectrum of cardiotoxicity associated with MTTs. Abbreviations: FTPase, farnesyl transferase protein; HER, human epidermal growth factor receptor; mAb, monoclonal antibody; MTT, molecular targeted therapy; PDGFR, platelet-derived growth factor receptor; PKC, phosphokinase C; TKI, tyrosine kinase inhibitor; VDA, vascular-disrupting agents; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

Stratificazione, prevenzione e monitoraggio del rischio cardiovascolare nei pazienti con leucemia mieloide cronica o leucemia linfoblastica acuta Ph1 positiva che hanno indicazione alla terapia con Ponatinib

Documento di Raccomandazioni di Consenso di Esperti

Eleonora ARBOSCELLO, Giovanni BAROSI, Fabio CICERI, Mauro GIORGI, Alberto GROSSI, Mario MALLARDO, Giorgio MINOTTI, Savina NODARI, Patrizia PREGNO, Carla SALA, Paolo SPALLAROSSA, Giovanni TORTORELLA

Quale paziente dobbiamo curare?

Differenza di popolazione tra K mammella e CML

Epidemiologia della CML

Incidenza aumenta con l'età con mediana a <u>45-55 anni</u>

- fino al 30% dei pz hanno >60 aa

in Piemonte 1.0/100000 nel 2013

- incidenza lievemente + elevata nei maschi
 - Maschio-femmina ratio 1.3:1
- •Alla diagnosi
 - 50% diagnosi in corso di test di routine
 - 85% diagnosi in fase cronica di malattia

Sawyers. *N Engl J Med*. 1999;340:1330. Faderl et al. *Ann Intern Med*. 1999;131:207.

Improvement of survival of CML 1983 – 2010

L'età è un problema?

• La LMC è più frequente nel soggetto anziano

• L'età da sola non è un problema, conta l'aspettativa di vita

Vi è maggiore probabilità di

- Ipertensione
- Patologie cardiovascolari
- Patologie metaboliche
- Patologie respiratorie

Atherosclerotic cardiovascular disease (CVD) is a chronic disorder developing insidiously throughout life and usually progressing to an advanced stage by the time symptoms occur

Le malattie cardiovascolari sono ancora la prima causa di morte in Europa e in USA !

Projections of Global Mortality and Burden of Disease from 2002 to 2003 PLoS Med 3(11): e442. doi:10.1371/journal.pmed.0030442.

Impatto globale della malattia cardiovascolare

- 16,6 milioni di persone muoiono per CVD ogni anno nel mondo:
 - -7,2 milioni di morti per CVD
 - 5,5 milioni di morti per infarto
- Le CVD contribuiscono a circa <u>un terzo</u> della totalità dei decessi
- Nell'ultima decade riduzione CVD in molti paesi Europei, ma aumento in quelli in via di sviluppo (EST)
- La cura clinica della CVD è costosa e di lunga durata
 mass disability e perdita di produttività

DISTRIBUTION OF CARDIOVASCULAR DISEASES DEATHS

Global Atlas on cardiovascular disease prevention and control, WHO Geneva, 2011

COEXISTENCE OF CARDIOVASCULAR DISEASES

Data from REACH study, Batth et al. JAMA 2006

SITI di SVILUPPO delle PLACCHE ATEROMASICHE

Le placche aterom. tendono a formarsi nei punti di ramificazione del sistema vascolare arterioso, dove il flusso d e l s a ngue è più turbolento ed è più probabile che si verifichi un danno all'endotelio.

TIPI DI MANIFESTAZIONE CLINICA in RELAZIONE al GRADO di STENOSI e all'ARTERIA COLPITA

		GRADO DI STENOSI		
		Stenosi	Stenosi occlusiva (o trombosi)	Distacco di embolo
	Arterie cerebrali, carotidee	TIA	lctus	TIA Ictus
ERIE COLPITE	Arterie coronarie	Angina pectoris	Infarto del miocardio	Infarto del miocardio
ARTE	Arterie iliache e femorali	Claudicatio intermittens	Dolore ischemico a riposo Necrosi ischemica	Dolore ischemico a riposo Necrosi ischemica

PATOLOGIE CONSEGUENTI alla PROGRESSIONE dell'ATEROSCLEROSI

- Cardiopatia ischemica (CVD):

 angina instabile (SCA) NSTEMI
 infarto del miocardio (STEMI)

 Malattia cerebrovascolare (CBVD)
 - attacchi ischemici transitori (TIA)
 - ictus
- Arteriopatia periferica (PAD)
 - claudicatio intermittens
 - dolore ischemico a riposo
 - necrosi ischemica

MANAGEMENT

La definizione del profilo cardiovascolare, del rischio individuale e la messa in atto di un monitoraggio clinico continuo sono essenziali nella gestione dei pazienti in trattamento con TKIs

Ruolo del Cardioncologo

• DURANTE CHT :

modulare la dose del farmaco in modo da somministrare la dose più alta possibile, senza causare severo danno cardiaco

• DOPO CHT :

Identificare il danno cardiaco in uno stadio precoce per prevenire un ulteriore deterioramento

VITA

CLINICAL WORK UP

- Anamnesi personale e famigliare
- Individuazione e correzione dei FRC
- Visita / esame obbiettivo
- Profilo biochimico completo (funzionalità renale ed epatica, assetto lipidico, HbA1C)
- ECG (+ ECG Holter e stress test se CAD nota)
- Secho
- EcoDoppler arterioso (se FRC) e venoso ABI
 BNP / Troponina (?)

FATTORI di RISCHIO CARDIOVASCOLARE

FATTORI NON MODIFICABILI

SESSO MASCHILE (Qmenopausa)

FAMILIARITÀ

FATTORI di RISCHIO CORONARICO

FATTORI MODIFICABILI

DISLIPIDEMIA **FUMO IPERTENSIONE** DIABETE SOVRAPPESO-OBESITÀ SEDENTARIETÀ STRESS

RISK OF CORONARY HEART DISEASE INCREASES WITH MULTIPLE RISK FACTORS

Analysis of data from the Framingham Heart Study

Risk factors

- Systolic Blood Pressure (>160 mm Hg)
- Cholesterol (>260 mg/dL)
- HDL cholesterol (<35 mg/dL)
- Diabetes
- Smoking
- Left ventricular hypertrophy confirmed by ECG

Men Women

Kannel, Hypertens Res 1995

Il rischio CV globale

<u>Effetto esponenziale</u> dell'interazione di più fattori di rischio

I fattori di rischio interagiscono comportando un <u>AUMENTO ESPONENZIALE</u> del rischio cardiovascolare

Per ridurre il RISCHIO CARDIOVASCOLARE GLOBALE è necessario identificare e trattare i principali fattori di rischio <u>COESISTENTI</u> nello stesso paziente

Il nuovo approccio ai F.R.C.

Poli A. Rischio Cardiovascolare globale, 2002

TREAT TO TARGET

THE HIGHER THE RISK, THE GREATER THE BENEFIT

FROM PREVENTIVE EFFORTS

Identificare i soggetti a rischio moderato/elevato

STILE di VITA

PREVENZIONE

TRATTAMENTO FARMACOLOGICO

Perché é necessaria la prevenzione cardiovascolare?

- La malattia cardiovascolare (CVD) rimane la principale causa di morte in Europa
- Più dell' 80% della CVD oggi si manifesta nei Paesi in via di sviluppo
- La CVD é causa di disabilità di massa (DALYs: Disability Adjusted Life Years): da 85 milioni nel 1990 a 150 milioni nel 2020
- → perdita di produttività !

Perché é necessaria la prevenzione cardiovascolare?

- La CVD é strettamente correlata allo stile di vita (FRC)
- Oltre il 75% di tutta la mortalità per CVD può essere prevenuto grazie ad un cambiamento nello stile di vita
- "LIFELONG APPROACH": la prevenzione dovrebbe iniziare fin dall'infanzia e continuare per sempre

2. Why is prevention of cardiovascular disease needed?

Terapia vs Prevenzione

Figure 1 Percentage of the decrease in deaths from coronary heart disease attributed to treatments and risk factor changes in different populations (adapted from Di Chiara et al.³¹)

Cost saving, improvement of the quality and lenght of people's lives, prevention of other conditions (cancer, pulmunary diseases, type 2 diabetes)

<u>MONICA - IMPACT</u>

Who should benefit from it ?

- RISCHIO = probabilità di sviluppare CVD entro un certo periodo di tempo
- Trattare la **persona** e non il fattore di rischio !
- Effetto esponenziale dalla somma di più F.R.C.
- Non esiste un cut-off oltre il quale iniziare la terapia, ma si tratta di un *continuum*
- I soggetti a più **alto rischio** sono quelli che ottengono il maggior vantaggio dalla correzione
- Mancato riconoscimento del rischio → — inadeguato trattamento negli Alto Rischio — abuso di farmaci nei Basso Rischio
Who should benefit from it ?

- "Rischio cardiovascolare globale": il CVD risk é il risultato dell'interazione di multipli F.R.
- Utilità di "carte del rischio" (SCORE) per il decision making ed evitare sotto- o sovra-th
- Alto rischio → trattamento immediato per tutti F.R.
- Giovani: meglio il rischio relativo o il "risk age"
- **Donne**: rischio dilazionato di 10 aa, non evitato
- Flessibilità: se l'ideale non si può ottenere su un F.R., bisogna adottare strategia aggressiva sugli altri

17 coorti arruolate in Italia tra il 1980 e il 2002 (Monica, Pamela, Matiss, Atena)

CARTE del RISCHIO C.V.

livello di rischio a 10 anni

rischio MCV VI	oltre 30%
rischio MCV V	20% - 30%
rischio MCV IV	15% - 20%
rischio MCV III	10% - 15%
rischio MCV II	5% - 10%
rischio MCV I	meno 5%

UOMINI DIABETICI

Paesi a Basso Rischio

Low CVD countries are Andorra, Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, Malta, Monaco, The Netherlands, Norway, Portugal, San Marino, Slovenia, Spain, Sweden, Switzerland, United Kingdom.

Figure 4 SCORE chart: 10-year risk of fatal cardiovascular disease (CVD) in countries at low CVD risk based on the following risk factors: age, sex, smoking, systolic blood pressure, and total cholesterol. Note that the risk of total (fatal + non-fatal) CVD events will be approximately three times higher than the figures given.

Figure 5 Relative risk chart for 10-year mortality. Conversion of cholesterol mmol/L \rightarrow mg/dL: 8 = 310, 7 = 270, 6 = 230, 5 = 190, 4 = 155.

LIMITI degli ALGORITMI

- In popolazioni differenti i vari parametri possono avere ruolo e peso diversi (genetica?)
- Le carte si fermano a 69 anni
- Non considerati:
 - Pressione diastolica
 - C-LDL
 - Sovrappeso / obesità
 - Diabete
 - Sedentarietà
 - Famigliarità
 - Malattia renale (GFR < 60 ml/min/1.73m²)
 - Placche carotidee
 - Stato sociale

VERY HIGH RISK

* CVD documentata, SCA, STEMI, rivascolarizzazione - stroke, arteriopatia periferica

* DIABETE (tipo 1 o 2) con 1 o più FRC e/o danno d'organo (microalbuminuria)

*** IRC SEVERA : GFR < 30 ml/min/1.73m² * SCORE ≥ 10%**

HIGH RISK

- Singolo F.R. marcatamente elevato (es. Dislipidemia famigliare, Ipertensione severa)
- DIABETE senza FRC né danno d'organo
- IRC moderata: GFR 30-59 ml/min/1.73m²
- SCORE ≥ 5% e < 10%

MODERATE RISK

SCORE ≥ 1% e < 5%

LOW RISK

• SCORE < 1%

Recommendations regarding risk estimation

Recommendations	Class ^a	Level ^b	GRADE	Ref ^c
Total risk estimation using multiple risk factors (such as SCORE) is recommended for asymptomatic adults without evidence of CVD.	I	С	Strong	36
High-risk individuals can be detected on the basis of established CVD, diabetes mellitus, moderate to severe renal disease, very high levels of individual risk factors, or a high SCORE risk, and are a high priority for intensive advice about all risk factors.	I	С	Strong	36,37

ALTO RISCHIO:

- CVD nota
- Diabete
- Malattia renale moderato/severa
- Livelli molto alti di F.R. individuali
- Alto SCORE risk

CVD = cardiovascular disease.

^aClass of recommendation.

^bLevel of evidence.

^cReferences.

Un Paziente in terapia con TKIs è da considerarsi "di default" ad alto rischio ?

Table 4 Guideline recommendations vs. achievements in patients with established coronary heartdisease in EUROSPIRE III (2006-2007)

Guideline recommendations	Proportions at goal
Smoking cessation among smokers	48
Regular physical activity	34
BMI <25 kg/m²	18
Waist circumference <94 cm (men) <80 cm (women)	25 12
Blood pressure <140/90 mmHg	50
Total cholesterol <4.5 mmol/L (175 mg/dL)	49
LDL cholesterol <2.5 mmol/L (100 mg/dL)	55
Among patients with type 2 diabetes: Fasting glycaemia <7.0 mmol/L (125 mg/dL) HbA _{1c} <6.5%	27 35

European Guidelines on cardiovascular disease prevention in clinical practice European Heart Journal (2012) 33. 1635-1701

Rischio CV			Livelli di Col-LDL		
(SCORE)	<70 mg/dL <1.8 mmol/L	70-100 mg/dL 1.8-2.5 mmol/L	100-155 mg/dL 2.5-4.0 mmol/L	155-190 mg/dL 4.0-4.9 mmol/L	>190 mg/dL >4.9 mmol/L
<1	Nessun intervento	Nessun intervento	Intervento sullo stile di vita	Intervento sullo stile di vita	Intervento sullo stile di vita; se insufficiente considerare farmacoterapia
≥1 a <5	Intervento sullo stile di vita	Intervento sullo stile di vita	Intervento sullo stile di vita; se insufficiente considerare farmacoterapia	Intervento sullo stile di vita; se insufficiente considerare farmacoterapia	Intervento sullo stile di vita; se insufficiente considerare farmacoterapia
>5 a <10, o alto rischio	Intervento sullo stile di vita; considerare farmacoterapia*	Intervento sullo stile di vita; considerare farmacoterapia*	Intervento sullo stile di vita e immediata farmacoterapia	Intervento sullo stile di vita e immediata farmacoterapia	Intervento sullo stile di vita e immediata farmacoterapia
≥10, o rischio molto alto	Intervento sullo stile di vita; considerare farmacoterapia*	Intervento sullo stile di vita e immediata farmacoterapia*	Intervento sullo stile di vita e immediata farmacoterapia	Intervento sullo stile di vita e immediata farmacoterapia	Intervento sullo stile di vita e immediata farmacoterapia

*In pazienti con infarto del miocardio, la terapia con statine dovrebbe essere considerata indipendentemente dai livelli di Col-LDL

CV = Cardiovascolare

Col-LDL= colesterolo a lipoproteine a bassa densità.

RIDUZIONE DELL'APPORTO DI ZUCCHERI SEMPLICI, GRASSI SATURI E COLESTEROLO

DIETA MEDITERRANEA!

STILE di VITA

POSITIVELY NO SMOKING

Considerare anche il FUMO PASSIVO !

OBESITY

Which index of obesity is the best predictor of CV risk?

- Both overweight (IMC 25-29.9 Kg/m²) and obesity (IMC≥30 Kg/m²) are associated with a risk of death in CVD
- There is a positive linear association of IMC with allcause mortality
- All cause mortality is lowest with a IMC of 20-25 Kg/m²
- Further weight reduction cannot be considered protective against CVD

Health Examination Survey 1998-2002

European Guidelines on cardiovascular disease prevention in clinical practice; European Heart Journal (2012) 33. 1635-1701

STILE di VITA

Recommendations regarding physical activity

Recommendations	Class ^a	Level ^b	GRADE	Ref ^c
Healthy adults of all ages should spend 2.5–5 h a week on physical activity or aerobic exercise training of at least moderate intensity, or 1–2.5 h a week on vigorous intense exercise. Sedentary subjects should be strongly encouraged to start light-intensity exercise programmes.	I	A	Strong	305– 308
Physical activity/aerobic exercise training should be performed in multiple bouts each lasting ≥ 10 min and evenly spread throughout the week, i.e. on 4–5 days a week.	lla	A	Strong	305– 308
Patients with previous acute myocardial infarction, CABG, PCI, stable angina pectoris, or stable chronic heart failure should undergo moderate- to-vigorous intensity aerobic exercise training ≥3 times a week and 30 min per session. Sedentary patients should be strongly encouraged to start light-intensity exercise programmes after adequate exercise-related risk	I	A	Strong	309, 310

BMC Cancer

Research article

BioMed Central

Population attributable risk of breast cancer in white women associated with immediately modifiable risk factors Christina A Clarke*, David M Purdie and Sally L Glaser

Physical inactivity

White women aged 40–79 years reporting no vigorous/ moderate physical activity in the last month ranged from 16.1 to 41.0% by county (Table 2). Using an RR estimate of 1.3[6], PAR estimates for physical inactivity ranged between 0.0% and 6.1% for county groups (Table 2). We estimated that statewide, 7.5% of breast cancer cases or 1,422 cases per year, were attributable to a sedentary lifestyle. Considering ranges of RR estimates from 1.2 to 1.4 and population prevalences from 15% to 45%, we estimated a corresponding range of PARs of 2%–15% (Figure 3).

Dieta + Farmaci anti ipertensivi

PREVALENCE OF HYPERTENSION IN ITALY

Non iperteso: PAS<140 mmHg E PAD<90 mmHg E senza trattamento Ben trattato: PAS<140 mmHg E PAD<90 mmHg Non adeguatamente trattato: PAS \geq 140 mmHg O PAD 90 \geq mmHg Ipertesi non trattati: PAS \geq 140 mmHg O PAD 90 \geq mmHg E senza trattamento

Health Examination Survey 1998-2002 e 2008-2012

Table 13Definitions and classification of bloodpressure levels^a

Category	Systolic BP (mmHg)		Diastolic BP (mmHg)
Optimal	<120	and	<80
Normal	120-129	and/or	80–84
High normal	130-139	and/or	85–89
Grade I hypertension	140-159	and/or	90–99
Grade 2 hypertension	160–179	and/or	100–109
Grade 3 hypertension	≥180	and/or	≥110
Isolated systolic hypertension	≥140	and	<90

BP = blood pressure. ^aBP levels in untreated individuals. Table 14Blood pressure thresholds for definition ofhypertension with different types of blood pressuremeasurement

	SBP (mmHg)	DBP (mmHg)
Office or clinic	140	90
24-hour	125-130	80
Day	130–135	85
Night	120	70
Home	130–135	85

BP = blood pressure; DPB = diastolic blood pressure; SBP = systolic blood pressure.

Modifiche s'	tile di vita e
controllo	pressorio
MODIFICHE STILE di VITA	RIDUZIONE di PAS (RANGE)
Riduzione peso	5 –20 mmHg / 10 kg
Dieta DASH*	8 – 14 mmHg
Dieta iposodica	2 – 8 mmHg
Attività fisica	4 – 9 mmHg
Riduzione alcool	2 – 4 mmHg

*<u>D</u>ietary <u>Approaches to Stop Hypertensione</u>

FARMACI ANTIIPERTENSIVI

LINEE GUIDA ESC-ESH

	NORMALE	NORMALE ALTA	Grado I	Grado II	Grado III
	120-129	130-139	140-159	160-179	> 180
	80-84	85-89	90-99	100-109	> 110
NO FRC	Nessun trattam.	Nessun trattam.	Stile vita + farmaci	Stile vita + farmaci	Stile vita + farmaci
1-2 FRC	Stile vita	Stile vita	Stile vita + farmaci	Stile vita + farmaci	Stile vita + farmaci
3 o > FRC	Stile vita	Stile vita	Stile vita + farmaci	Stile vita + farmaci	Stile vita + farmaci

Ipertensione e TKIs

Nilotinib should be co-administered "with caution" with these drugs according to its SmPC

E. Abruzzese, M. Breccia, R. Latagliata, BioDrugs 2013

Ipertensione e TKIs

Dasatinib should be co-administered "with caution" with these drugs according to its SmPC

E. Abruzzese, M. Breccia, R. Latagliata, BioDrugs 2013

Recommendations on diabetes mellitus

DIABETE

Recommendations	Class ^a	Level⁵	GRADE	R ef ^c
The target HbA _{1c} for the prevention of CVD in diabetes of <7.0% (<53 mmol/mol) is recommended.	I.	А	Strong	434, 435
Statins are recommended to reduce cardiovascular risk in diabetes.	I.	A	Strong	166, 436
Hypoglycaemia and excessive weight gain must be avoided and individual approaches (both targets and drug choices) may be necessary in patients with complex disease.	I	В	Strong	435, 437, 438
Metformin should be used as first-line therapy if tolerated and not contraindicated	lla	В	Strong	439
Further reductions in HbA _{1c} to a target of <6.5% (<48 mmol/mol) (the lowest possible safely reached HbA _{1c}) may be useful at diagnosis. For patients with a long duration of diabetes this target may reduce risk of microvascular outcomes.	IIb	В	Weak	435
BP targets in diabetes are recommend to be <140/80 mmHg.	I.	А	Strong	440, 441
Target LDL cholesterol is <2.5 mmol/L, for patients without atherosclerotic disease total cholesterol may be <4.5 mmol/L, with a lower LDL cholesterol target of <1.8 mmol/L (using higher doses of statins) for diabetic patients at very high CVD risk.	IIb	В	Weak	442
Antiplatelet therapy with aspirin is not recommended for people with diabetes who do not have clinical evidence of atherosclerotic disease.	ш	А	Strong	443

Prevalence of diabetes in Italy

- HbA1c < 7.0% (< 6.5% se lunga durata)
- PAO < 140/90 mmHg (meglio <130/80)
- CHOL:
 - LDL < 115 mg/dl (Chol Tot < 190 mg/dl)</p>
 - -Alto rischio: LDL < 100 mg/dl
 - -Rischio molto alto: LDL < 70 mg/dl
 - Basse HDL ed ipertrigl sono F.R. indipendenti

Problema: il target

- Mancato raggiungimento del target terapeutico in un'elevata quota di pazienti a rischio cardiovascolare elevato/moderato
- Scarsa consapevolezza della correlazione tra riduzione del rischio cardiovascolare e obiettivi terapeutici suggeriti dalle Linee Guida
- Mancato monitoraggio dell'efficacia del trattamento ipocolesterolemizzante
- Inadeguatezza dei farmaci ("dose tritation")

P.O. MOLINETTE	AREA TEMATICA Oncologica	PROGRAMMA 1º giorno 9.00-9.30 Le dimensioni del problema e il
Evento residenziale	FINALITA'	modello di rete (O. Bertetto) 9.30-11.00 Il rischio di tossicità riguardo a: - terapie oncologiche (M. Mistrangelo) - terapie ematologiche (P. Pregno)
TERAPIE ONCOLOGICHE E	Acquisire conoscenze e competenze	11.00-12.30 Meccanismi di cardiotossicità: Disfunzione ventricolare sinistra, Ischemia
Dia Ca	gnostica rdiotossi	della icità
ORARIO Dalle 9.00 alle 17.00	approfondimenti sulla tossicità cardiaca nel paziente oncologico	15.30-16.00 Cardioprotezione e terapia cardiologica (P. Lusardi) 16.00-17.00 Management della cardiotossicità: il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo)
ORARIO Dalle 9.00 alle 17.00 SEDE DEL CORSO	approfondimenti sulla tossicità cardiaca nel paziente oncologico ARTICOLAZIONE	15.30-16.00 Cardioprotezione e terapia cardiologica (P. Lusardi) 16.00-17.00 Management della cardiotossicità: il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo) 2º giorno 9.00-13.00 Suddivisione dei partecipanti in
ORARIO Dalle 9.00 alle 17.00 SEDE DEL CORSO Torino, Via Rosmini 4/A terzo piano	approfondimenti sulla tossicità cardiaca nel paziente oncologico ARTICOLAZIONE Il Corso si articola in formula mista	15.30-16.00 Cardioprotezione e terapia cardiologica (P. Lusardi) 16.00-17.00 Management della cardiotossicità: il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo) 2º giorno 9.00-13.00 Suddivisione dei partecipanti in gruppi di lavoro con gestione casi clinici supportati da un leader (M. Giorgi, A. Fava, P. Lusardi, E. Coletti Moia, A. Bonzano, A. Milan, I.
ORARIO Dalle 9.00 alle 17.00 SEDE DEL CORSO Torino, Via Rosmini 4/A terzo piano Evento organizzato con il pat A.R.C.A.	approfondimenti sulla tossicità cardiaca nel paziente oncologico ARTICOLAZIONE Il Corso si articola in formula mista	15.30-16.00 Cardioprotezione e terapia cardiologica (P. Lusardi) 16.00-17.00 Management della cardiotossicità: il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo) 2º giorno 9.00-13.00 Suddivisione dei partecipanti in gruppi di lavoro con gestione casi clinici supportati da un leader (M. Giorgi, A. Fava, P. Lusardi, E. Coletti Moia, A. Bonzano, A. Milan, I.
ORARIO Dalle 9.00 alle 17.00 SEDE DEL CORSO Torino, Via Rosmini 4/A terzo piano Evento organizzato con il pat A.R.C.A. Corso accreditato s Sistema ECM Regione Pie COD. 20492 - Crediti calco	approfondimenti sulla tossicità cardiaca nel paziente oncologico ARTICOLAZIONE Il Corso si articola in formula mista Mauro GIORO CARDIOLOGIA 2 - OSP.MO della SALUTE e della SCIENZ	15.30-16.00 Cardioprotezione e terapia cardiologica (P. Lusardi) 16.00-17.00 Management della cardiotossicità: il ruolo del cardiologo e dell'oncologo (A. Fava, M. Mistrangelo) 2º giorno 9.00-13.00 Suddivisione dei partecipanti in gruppi di lavoro con gestione casi clinici supportati da un leader (M. Giorgi, A. Fava, P. Lucardi E Coletti Moia, A. Bonzano, A. Milan, I.
DIAGNOSI

La cardiotox può interessare tutte le strutture cardiache (miocardio, pericardio, coronarie, tessuto di conduzione, valvole)

- ECG basale
- ECG HOLTER
- TEST ERGOMETRICO
- SCINTIGRAFIA MIOCARDICA BASALE e SFORZO
- CORONAROGRAFIA
- RMN / MRI
- ECOCARDIOGRAFIA
- MARKERS BIOCHIMICI (Tnl BNP)
- (BIOPSIA MIOCARDICA)

ECG - ECG HOLTER

- TACHICARDIA SINUSALE: importante segno di allarme, se persistente in Pt altrimenti stabile
- ARITMIE IPERCINETICHE : CPSV, CPV, TPSV, FA, TV, TdP
- ARITMIE IPOCINETICHE: bradic., BBdx-s, BAV I III
- ALLUNGAMENTO del QTc
- RIDUZIONE VOLTAGGI : pericardite
- SEGNI di IPERTROFIA SOVRACCARICO
- SEGNI di ISCHEMIA NECROSI: sottoST, onde Q Tneg
- > VPN \approx 95 % \rightarrow se normale, esclusione di scompenso

ALLUNGAMENTO QTc

ONDA di LESIONE

0000~00000 .001

F ~ 40 0185L

DIAGNOSI di SINDROME CORONARICA

- **1. TEST ERGOMETRICO**
- 2. ECOSTRESS (dpm dobu sforzo)
- 3. SCINTIGRAFIA MIOCARDICA (dpm-Tc / sforzo-TI201)
- 4. CORONAROGRAFIA (anche <u>coronarite</u> da RX-terapia)
 5. TEST ERGONOVINA (spasmo!)

6. TC CORONARICA

SCINTIGRAFIA MIOCARDICA

- ANGIOCARDIOSc. RADIOSIOTOPICA: volumetria valutazione dell'EF (più "pessimistica" dell'ECHO)*
- DA SFORZO (TI 201) o STRESS DIPIRIDAMOLO (Tc): diagnosi di cardiopatia ischemica
- AC ANTI-MIOSINA (Indio¹¹¹): utile a scopo "speculativo", in Molinette abbandonata per difficoltà pratiche e tempi lunghi
- ** N.B.: meglio evitare la somministrazione di radioisotopi per la valutazione dell'EF

ANGIOCARDIOSCINTIGRAFIA

SCINTIGRAFIA STRESS

GE MEDICAL SYSTEMS LIA. Osp Molinette ABBONDANZA FRANCESCO Signa HDxt GemsGems Ex: 14281/66753.2013.3 M55Y/May 26 1958 1.2.840.113619.2.312.6945.3745412.20360.1385363864.465 Se: 6 Nov 25 2013 lm: 1 0 AX S 4.7 11:04:11 AM DFOV 35.0cm Mag = 1.00 FL: ROT: 72 bpm TD:10 Ph:1/30 VS:20 R A I L P S FIESTA/60 TR:4 TE:1.7 EC:1 /1 125kHz ٧> 8CARDIAC/FL:p+ FOV:35x35 8.Liihk/D.Dsp/C 30/00/12 224X224/1.00 NEX WW: 4072WL: 2036 EG/SQ/2512

Myocarditis

Hypertrophic

Amyloidosis

Edinburgh Claudication Questionnaire

The Edinburgh Claudication Questionnaire: <u>CAD/PVD</u>

* A positive questionnaire diagnosis of claudication is made only if the "correct" answer is given to all questions

	Correct Answer	
 1. Do you get pain or discomfort in your legs(s) when you walk? Yes ONO Unable to walk If you answered "yes" to question 1, please answer the following questions 	Yes	
2. Does the pain ever begin when you are standing or sitting still?	No	
3. Do you get it when you walk uphill or in a hurry?	Yes	
4. Do you get it when you walk at an ordinary pace on the level?	Yes	
5. What happens if you stand still?		
 Usually continues for more than 10 minutes? 	No	
Usually disappears in 10 minutes or less?	Yes	
6. Where do you get this pain or discomfort?		
 Mark the places with an "X" on the diagram 		

Ankle-Brachial Index

www.medscape.com

Medscape® Interpretation of ABI Average right ankle pressure **Right ABI** Average brachial artery pressure Recommendation ABI Value Interpretation 0.9 0.4 Average left anide pressure Calcification / Vessel Refer to vascular Greater Left ABI -Avenue brachial artery pressure specialist Hardening than 1.4 0.0 1.0 - 1.4Normal None 0.9 - 1.0Acceptable **Right-arm** systolic pressure Some Arterial Disease Treat risk factors 0.8-0.9 Moderate Arterial Refer to vascular 0.5 - 0.8 specialist Disease Refer to vascular Less Severe Arterial DP DP **Right-ankle** specialist then 0.5 Disease systolic pressure PT PT Stanford Medicine 25 💔

MARKERS BIOCHIMICI

 I tradizionali markers enzimatici di danno cardiaco (CK-MB, CK-MB massa, Mioglobina) hanno dimostrato uno scarso VPP e non si sono dimostrati utili nel predire la CTX

Nuovi markers biochimici:

PEPTIDI NATRIURETICI

- NT-proBNP , α -ANP e BNP
- L'aumento di pressione t.d. stimola i recettori di stiramento atriali:
 - effetto natriuretico
 - effetto vasodilatatorio
- Il rilascio aumenta molto nello scompenso
- Alto valore prognostico (95%)
- Livelli normali-bassi in pts non trattati → scarsa probabilita' di CHF → no ulteriori indagini
- Livelli alti → prob. disfunz. diastolica
- Altre cause : ipertensione, valvulopatie, ischemia, embolia polmonare, IVS

NT – proBNP

- Frammento amino-terminale del BNP
- Screening in PTs asintomatici (→ ACE-i)
- Sintomatologia (dispnea) di natura incerta
- Stratificazione prognostica:
 - BNP < 350 → buona prognosi</p>
 - BNP > 350 \rightarrow alta riammissione in H a 6 mesi
 - BNP > 750 \rightarrow 100% re-ospedalizzazione
- Titolazione della terapia, es. Bisoprololo:
 - Responders = $BNP \Psi$, $EF \uparrow$
 - Non responders = BNP \uparrow , EF \checkmark
- <u>Problema</u>: ampia zona grigia (350-750)

BNP come indicatore di CTX

- Disomogenità degli studi, bassa numerosità delle casistiche, dati incompleti, metodi di misura disponibili in commercio solo in 8 studi (solo 3 auto)
- Mancanza di univocità delle conclusioni
- Possibile effetto inibitorio della doxo su espressione genica del BNP (effetto paradosso di ♥)
- A = ↑ persistente (33%), B = ↑ transitorio (36%), C = nessun ↑ (31%): solo A peggiora EF a 1 aa f.u.
- > Al momento NON raccomandato l'uso routinario
- ➤ Necessità di ulteriori studi

TROPONINA (I-T)

- Omogeneità del livello decisionale (Coeff.Var. 10%)
- Positività nel 30-34% dei PTs sottoposti a C.T.
- Tnl: specificità = 100%, V.P.P. = 100%, V.P.N. = 99%
- TnT, CK-MBm: sensibilità = 90%, V.P.N. = 97.6%
- Velocità di positivizzazione: CK-MB, Myo, TnT (IMA)
- Tn+ predice disfunzione cardiaca < 3 mesi
- Il valore di Tn predice grado e severità di disfunzione
- Persistenza di Tn+ > 1 mese \rightarrow 85% MACE in 1 aa
- Tn- identifica i PTs a più basso rischio di CTX

TROPONINA (I – T)

- CUT OFF:
 - Tnl > 0.08
 - TnT > 0.03
- **PROTOCOLLO**: pre, post, 24 48 72 h, 1 mese
- Determinazione di CTX in tempi molto precoci
- ➢ Alla fine di C.T. permette di identificare i PTs ad alto rischio di CTX → stretto controllo funzione cardiaca
- Rapporto costo-beneficio: esclusione dei PTs a basso rischio dal monitoraggio cardiaco a lungo termine
- Possibile cardioprotezione in sogg asintomatici (CTX subclinica)

Figure 17 Early detection of subclinical LV dysfunction using biomarkers.

Annals of Oncology 23 (Supplement 7): vii155–vii166, 2012 doi:10.1093/annonc/mds293

clinical practice guidelines

Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines[†]

G. Curigliano¹, D. Cardinale², T. Suter³, G. Plataniotis⁴, E. de Azambuja⁵, M. T. Sandri⁶, C. Criscitiello¹, A. Goldhirsch¹, C. Cipolla² & F. Roila⁷, on behalf of the ESMO Guidelines Working Group^{*}

La <u>cardiotossicità</u> è caratterizzata da almeno uno tra: -sintomi di scompenso cardiaco

-segni clinici di scompenso cardiaco (es. T3 o tachicardia)

-Riduzione di EF di almeno 5% sotto i 55% con sintomi o segni di scompenso

-Riduzione del 10% sotto i 55% senza segni o sintomi associati

CARDIOTOSSICITA'

Table 1 Characteristics of type I and II CTRCD

		Туре І	Туре II
Characteristic agent	Doxorubicin		Trastuzumab
Clinical course and typical response to antiremodeling therapy (β-blockers, ACE inhibitors)	May stabilize, but underlying damage appears to be permanent and irreversible; recurrence in months or years may be related to sequential cardiac stress		High likelihood of recovery (to or near baseline cardiac status) in 2–4 months after interruption (reversible)
Dose effects	Cumulative, dose related		Not dose related
Effect of rechallenge	High probability of recurrent dysfunction that is progressive; may result in intractable heart failure or death		Increasing evidence for the relative safety of rechallenge (additional data needed)
Ultrastructure	Vacuoles; myofibrillar disarray and dropout; necrosis (changes resolve over time)		No apparent ultra structural abnormalities (though not thoroughly studied)
	Cance Regimen potentially associated with Type I toxicity • Doxorubicin • Epirubicin • Idarubicin • Mitoxantrone	Cancer r Therapeutics Regimen poter associated v Type II toxic • Trastuzum • Lapatinib • Pertuzuma • Imatininb • Sorafenib • Sunitinib • Bevacizum	ntially vith sity ab ab

Figure 1. Algorithm for the management of cardiotoxicity in patients receiving anthracyclines.

Figure 2. Algorithm for continuation and discontinuation of trastuzumab based on LVEF assessments.

ECOCARDIOGRAFIA

- Volumetrie, geometria, spessore, massa
- Funzione sistolica (EF) e cinesi segmentaria
- Funzione diastolica
- Versamento pericardico
- Doppler: valvulopatia associata (IM)
- Stima accurata delle pressioni polmonari
- Parametri emodinamici quantitativi: portata, stroke volume, gradienti
- Nuove tecnologie: TDI, strain, 3D, perfusione

LIMITI dell'ECOCARDIOGRAFIA

Valutazione ecocardiografica dei volumi, dell'EF e della cinesi segmentaria: un campo minato!

- Negli adulti il quesito più comune delle richieste di esami echo riguarda la valutazione delle dimensioni e della funzione ventricolare
- M-mode e 2D: assunzioni geometriche rilevanti
- Ampia variabilità inter- ed intra-osservatore
- Ancora diffusa valutazione "oculometrica" della funzione globale e regionale
- Pur esistendo metodi più precisi ("Simpson rule biplano"), non sono applicati ("time consuming")

EF e PITFALLS

- Ogni Pt è caratterizzato da condizioni funzionali ed emodinamiche diverse
- L'EF non riflette accuratamente lo stato contrattile del miocardio, essendo influenzata dalle condizioni di carico (—> annotare FC e PAO durante gli esami)
- L'EF non sempre riflette la portata cardiaca, che può:
 - essere conservata in Pts con bassa EF, ma VS di volumetria aumentata
 - essere ridotta in Pts con EF normale, ma piccola volumetria ventricolare / ipertrofia o insufficienza mitralica severa o compromissione della funzione diastolica

m-MODE: TEICHOLZ

-3

$7 \times DTD^3/2.4 + DTD$

Formula complessa che misura un <u>diametro</u> che anatomicamente non esiste!

-2

1 IVSd LVIDd LVPWd **IVSs** LVIDs LVPWs EDV(Teic ESV(Teid EF(Teich) %FS LVd Mas LVIDd ind LVIDs Inc

[cm]

5

E 2

AP4

10

LV EDD

LV ESD

2D BIPLANO: SIMPSON RULE -S DISCHI

A4C

A2C

MAPSE = "Mitral Annular Plane Systolic Excursion"

Dp / dt

DOPPLER TISSUTALE 122210 Prequit 27 MHs/3.4 MHs

S1: evidente in ipertensione, ipertrofia, anziani, CMP ipocinetica, CAD

-2.0

CINESI SEGMENTARIA - WMSI

FUNZIONE SISTOLICA SEGMENTARIA: WMSI

SISTEMA NUMERICO di PUNTEGGIO ad ogni segmento (punteggio ALTO -> alterazione SEVERA) (V.N.=1)

- 1. NORMALE: inspessimento sist > 40% (>5 mm)
- 2. IPOCINESIA: inspessimento sist < 30% (2-5 mm)
- 3. ACINESIA: inspessimento sist < 10% (\leq 2 mm)
- 4. DISCINESIA: movimento di estroflessione
- 5. ANEURISMA

WMSI ≥1.7 → difetto di PERFUSIONE ≥20%

Wall Motion Score Index

Table I. Distribution of mean EF, mean peak CPK-MB and different type of Killip's class in twogroups of WMSI.

	Killip Class 1	Killip Class 2	Killip Class 3	Killip Class 4
WMSI<2	44	19	0	0
WMSI>=2	28	39	13	7

WMSI ≥ 2 correlazione con sintomi e mortalità

ECOCONTRASTO (SonoVue)

MIOCARDIO CONTRASTO PERFUSIONE

Contrast Echocardiography *Evidence for Perfusion*

Baseline

Myocardial Phase

FUNZIONE DIASTOLICA

? 👰 🗭

Quinones ASE Review 2007

TDI: TISSUE DOPPLER IMAGING

Ommen SR et al, Circulation 2000

FUNZIONE DIASTOLICA

- Rapporto E/A e Deceleration Time al PW
- <u>Consigliato</u> Doppler Tissutale (TDI):

✓ E' (v.n. > 8 cm/s)

✓ rapporto E/E' (v.n. < 9)</p>

- FUNZIONE SISTODIASTOLICA:
- IMP (Tei index): v.n. < 0.4 (PW) < 0.55 (TDI)

Index of Myocardial Performance (IMP)

Valutazione <u>sisto-diastolica</u>: durata del periodo di contrazione isovolumetrica (IVCT) e di rilasciamento isovolumetrico (IVRT) su eiezione ao (ET) = <u>TEI Index</u>

EF NORMALE

EF RIDOTTA

🖉 🔿

GRADING DISFUNZIONE DIAST.

Temporal Changes in Standard and Tissue Doppler Imaging Echocardiographic Parameters After Anthracycline Chemotherapy in Women With Breast Cancer

Marzia Lotrionte, MD^a, Elena Cavarretta, MD, PhD^b, Antonio Abbate, MD, PhD^c, Eleonora Mezzaroma, PhD^c, Eugenia De Marco, MD^a, Silvia Di Persio, RN^a, Francesco Loperfido, MD^a, Giuseppe Biondi-Zoccai, MD^{b,*}, Giacomo Frati, MD^{b,d}, and Giovanni Palazzoni, MD, PhD^e

> Anthracyclines are established cardiotoxic agents; however, the exact extent and time course of such cardiotoxicity has not been appraised in detail. We aimed to exploit serial measurements of standard and tissue Doppler imaging (TDI) echocardiographic parameters collected in a prospective clinical trial to clarify the outlook of cardiac function during and long after anthracycline chemotherapy. Women enrolled in a randomized trial focusing on liposomal doxorubicin-based chemotherapy for breast cancer and providing ≥ 4 separate echocardiographic assessments were included. Repeat-measure nonparametric analyses were used to appraise changes over time in the standard and tissue Doppler imaging echocardiographic parameters. A total of 39 patients with serial imaging evaluations were enrolled. Significant temporal changes were found for the left ventricular ejection fraction and diastolic parameters, despite different temporal trends. Specifically, the left ventricular ejection fraction exhibited a $\sqrt{-}$ shaped trend, decreasing initially from 63% to 61% but then recovering to 64% (p <0.001), with a similar trend in the TDI E/Em ratio (p = 0.011). In contrast, persistent impairments typical of an L-shaped trend were found for the E wave (p = 0.006), TDI lateral Em wave (p = 0.001), and TDI septal Em wave (p = 0.001). In conclusion, subclinical temporal changes in the standard and TDI echocardiographic parameters after anthracycline chemotherapy showed a distinctive pattern of transient impairment followed by full recovery of the left ventricular ejection fraction versus a persistent impairment of the diastolic parameters, which must be taken into account in the everyday treatment of such patients. © 2013 Elsevier Inc. All rights reserved. (Am J Cardiol 2013;112:1005-1012)

39 ♀, liposomal-doxo, 4 f.u.: fine, 6, 12, 18-24 m EF e funzione diastolica

Evaluation of early subclinical cardiotoxicity of chemotherapy in breast cancer

Hayri Alıcı, Ozan Balakan¹, Süleyman Ercan², Musa Çakıcı³, Fethi Yavuz⁴, Vedat Davutoğlu²

Clinic of Cardiology, 25 Aralık State Hospital, Gaziantep-*Turkey* ¹Department of Oncology, Faculty of Medicine, Sütçü İmam University; Kahramanmaraş-*Turkey* ²Department of Cardiology, Faculty of Medicine, Gaziantep University; Gaziantep-*Turkey* ³Department of Cardiology, Faculty of Medicine, Adıyaman University; Adıyaman-*Turkey* ⁴Clinic of Cardiology, Dr. Ersin Arslan State Hospital; Gaziantep-*Turkey*

Tissue Doppler imaging may be more sensitive than ECG, conventional ECHO and Doppler for determining the subclinical cardiac damage.

hospital in University of Gaziantep. Before chemotherapy, all of the patients underwent to detailed ECG and echocardiography (ECHO) examinations. After 6 months, detailed ECG and ECHO examinations were repeated and compared with baseline values. Statistical analysis was performed using Shapiro-Wilk tests, Student t-test and Spearman correlation test.

Results: The average age of patients was 51 and one was male. Statistically significant decrease in ejection fraction was found after treatment ($62.3\%\pm3.3$ and $59.9\%\pm5.9$, p=0.002). Evaluation of diastolic parameters; significant increase in the transmitral A flow velocity and significant decrease of E/A ratio were observed on Doppler ECHO analysis (77.4 ± 19.1 cm/sec versus 86 ± 18 cm/sec, p<0.001; 1.01 ± 0.3 versus 0.9 ± 0.2 , p=0.03, respectively). On tissue Doppler analysis we observed that significant reduction in the value of E' and significantly increase E/E' ratio were present (12.5 ± 3.6 cm/sec versus 10.7 ± 2.9 cm/sec, p=0.001; 6.6 ± 2.9 versus 7.7 ± 3.3 , p=0.04, respectively).

Conclusion: Chemotherapy has detrimental subclinical effect on both of systolic and diastolic function in early six months period despite the prescription of lower dosage of chemotherapy than well-known cardiac safety dosage limits. Tissue Doppler imaging may be more sensitive than ECG, conventional ECHO and Doppler for determining the subclinical cardiac damage. (*Anadolu Kardiyol Derg 2015; 15(0): 000-000*) **Key words:** breast cancer, chemotherapy, echocardiography, tissue Doppler imaging, cardiotoxicity

Incidence, Predictors, and Impact on Survival of Left Ventricular Systolic Dysfunction and Recovery in Advanced Cancer Patients

Guilherme H. Oliveira, MD^a,*, Siddarth Mukerji, MD^b, Adrian V. Hernandez, MD^{c,d}, Marwan Y. Qattan, MD^a, Jose Banchs, MD^e, Jean-Bernard Durand, MD^e, Cezar Iliescu, MD^e, Juan Carlos Plana, MD^f, and W.H. Wilson Tang, MD^f

Although left ventricular (LV) dysfunction occurs not uncommonly in the course of cancer therapy, little is known about its natural history and prognostic impact on patients. To investigate the incidence, predictors, and impact on survival of LV systolic dysfunction and recovery during cancer therapy, we conducted a retrospective cohort observational study over 1 year at the University of Texas MD Anderson Cancer Center. We enrolled patients with a decrease in <u>ejection fraction by echocardiography to <50% while undergoing cancer therapy</u> from January 2009 to December 2009. We collected and analyzed their chart data. Of 7,648 patients with echocardiograms in 2009, 366 (4.8%) had ejection fraction <50% and 104 met study criteria. LV systolic dysfunction was associated with cardiotoxic therapy in 53 patients (51%). Recovery occurred in 57 patients (55%) and was independently predicted by younger age, smaller left atrial volume index, and lower B-type natriuretic peptide. At last follow-up, 69 patients (66%) were dead, and 35 (34%) were alive. There was a 20% advantage in 2-year survival among patients with LV systolic recovery compared with those without (95% confidence interval 4% to 41%, p = 0.02). In this retrospective study, LV systolic dysfunction recovery occurred in over half of the patients, appeared independent of cardiotoxic etiology, and associated with a 20% survival benefit at 2 years. Multivariable predictors of recovery are

<u>CONCLUSIONI</u> - PREDITTORI DI RECUPERO (EF † 10%):

- Età più giovane (52 ± 16 vs 58 ± 16 aa)
- Volumetria atrio sn più bassa (26 ± 8 vs 33 ± 10 ml/m²): < 30 ml/m²
- Valori più bassi di BNP (577 vs 1332) non variazioni Tnl

Assessing Anthracycline-Treated Childhood Cancer Survivors With Advanced Stress Echocardiography

A. Blythe Ryerson, PhD, MPH,¹* William L. Border, MBChB, MPH,^{2,3} Karen Wasilewski-Masker, MD, MSc,^{3,4} Michael Goodman, MD, MPH,¹ Lillian Meacham, MD,^{3,4} Harland Austin, DSc,¹ and Ann C. Mertens, PhD^{1,3,4}

Background. Surveillance for anthracycline cardiotoxicity in cancer survivors typically utilizes resting M-mode and twodimensional echocardiography, which are insensitive to detection of subtle myocardial changes. We examined childhood cancer survivors treated with anthracyclines during exercise using various echocardiography techniques to investigate if these tools can better detect subclinical cardiac dysfunction. *Procedure.* We recruited asymptomatic survivors at least five years post treatment. Echocardiography was performed at rest and at termination of exercise utilizing tissue Doppler techniques and strain rate imaging. *Results.* Eighty participants were characterized by cardiotoxicity risk status (high [12], moderate [23], low [24], no risk [21]) as defined by the Children's Oncology Group Long Term Follow-Up Guidelines v3.0. The high-risk group had a higher resting heart rate than controls (100 vs. 88 bpm [*P* for trend = 0.049]). Peak aerobic capacity in all groups

was similar. Compared to controls at rest, the high-risk group had evidence of diastolic dysfunction with lower E/A ratios (1.4 vs. 2.0, P = 0.008) and higher septal early diastolic velocities (E/E') of 11.7 versus 9.9 (P = 0.165). With exercise, this difference resolved and myocardial contractile reserve was preserved. **Conclusions.** Asymptomatic, pediatric cancer survivors at high-risk for anthracycline cardiotoxicity have some evidence of diastolic filling abnormalities at rest. With exercise, they augment their systolic and diastolic function to achieve normal maximal aerobic capacity suggesting they are able to compensate for mild cardiac dysfunction in the early years after exposure. Additionally, findings suggest that routine exercise echocardiography may not be a useful surveillance tool to assess anthracycline cardiotoxicity. Pediatr Blood Cancer © 2014 Wiley Periodicals, Inc.

Key words: anthracyclines; echocardiography; neoplasms; pediatrics; stress; survivors

CONCLUSIONI:

- nei survivors EF normale, ma presenza di disfunzione diastolica
- durante esercizio aumento funzione sistodiastolica

NUOVE TECNOLOGIE

3D-ECHO REAL TIME 2D/3D STRAIN

3D TRIPLANO

SINGLE BEAT

BORDO SEMI-AUTOMATICO

SINGLE BEAT: DYNAMIC 12 SLICES

RENDERING 3D 08:48:10 1 EDV 102 ml ESV 33 ml EF 68 % HR 62 BPM sv 69 ml min).22 ES ml ED

European Journal of Echocardiography Advance Access published January 6, 2010

European Journal of Echocardiography doi:10.1093/ejechocard/jep217

Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography

Denisa Muraru¹*, Luigi P. Badano², Gianluca Piccoli³, Pasquale Gianfagna², Lorenzo Del Mestre², Davide Ermacora², and Alessandro Proclemer²

 Table 2
 Comparison of left ventricular volumes and ejection fraction of the 23 patients in the validation group with the results of cardiac magnetic resonance (means ± SD)

n = 23	2DE	Corrected 4D AutoLVQ	Fully automated 4D AutoLVQ	4D TomTec	CMR
EDV (mL)	110 ± 30*	126 <u>+</u> 34	104 <u>+</u> 30*	129 <u>+</u> 34	137 <u>+</u> 36
ESV (mL)	49 <u>+</u> 17*	56 ± 20	51 <u>+</u> 17*	58 ± 21	65 ± 20
EF (%)	55 ± 9	56 <u>+</u> 8	52 ± 7	56 ± 8	53 ± 8

EDV, end-diastolic volume; ESV, end-systolic volume; EF, ejection fraction; 2DE, two-dimensional echocardiography; CMR, cardiac magnetic resonance. *P ≤ 0.01, paired t-test compared with CMR values.

Eco 3D vs MRI in pz con/senza anomalie del wall motion: Volumi e Frazione di Eiezione

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc.

Cardiac Imaging

Reproducibility of Echocardiographic Techniques for Sequential Assessment of Left Ventricular Ejection Fraction and Volumes

Application to Patients Undergoing Cancer Chemotherapy

Paaladinesh Thavendiranathan, MD, MSC, Andrew D. Grant, MD, Tomoko Negishi, MD, Juan Carlos Plana, MD, Zoran B. Popović, MD, PHD, Thomas H. Marwick, MD, PHD, MPH *Cleveland, Ohio*

Confronto tra 2D-biplano, 2D-biplano/contrasto, Triplano, Triplano/contrasto, 3D, 3D/contrasto

Conclusions Noncontrast 3DE was the most reproducible technique for LVEF and LV volume measurements over 1 year of follow-up. (J Am Coll Cardiol 2013;61:77–84) © 2013 by the American College of Cardiology Foundation

Table 2	Interobserver	and Intraobserver Va	ariability and Minim	al Detectable Chan	ge for EF Measurem	ents by All 6	Techniques
		Bi	Bi + Co	Tri	Tri + Co	3D	3D + Co
Intraobserve	r	0.033*	0.035*	0.038*	0.037*	0.017	0.026
$\operatorname{Min}\Delta\operatorname{detec}$	table	0.090	0.098	0.104	0.102	0.048	0.072
Interobserve	r	0.040	0.051*	0.049*	0.048*	0.027	0.038
$\operatorname{Min}\Delta\operatorname{detec}$	table	0.111	0.142	0.135	0.133	0.075	0.100
Interobserve	r test-retest	0.047*	0.055*	0.058*	0.069*	0.022	0.042*
$\operatorname{Min} \Delta \operatorname{detec}$	table	0.013	0.152	0.162	0.192	0.060	0.115

Noncontrast 3D had the lowest intraobserver and interobserver test-retest observer variability and the smallest minimal detectable change. An ejection fraction (Lot 2013) corresponds to 3.3%. *p < 0.01 t test compared with noncontrast 3D.

Bi = biplane Simpson's; BP + Co = biplane Simpson's with contrast; Tri = triplane; Tri + Co = triplane + contrast; 3D = 3-dimensional; 3D + Co = 3-dimensional with contrast.

Three-Dimensional Echocardiography and Cardiac Magnetic Resonance Imaging in the Screening of Long-Term Survivors of Childhood Cancer After Cardiotoxic Therapy

Kaisa Ylänen, MD^{a,b,*}, Anneli Eerola, MD, PhD^a, Kim Vettenranta, MD, PhD^{c,d}, and Tuija Poutanen, MD, PhD^{a,b}

71 survivors - <u>GRUPPO 1</u>: ANTH (n = 63); <u>GRUPPO 2</u>: ANTH + RXTH N = 8)

LO STRAIN MOVIMENTO e DEFORMAZIONE

IL CUORE: FASCI MUSCOLARI

LV segmentation

LV mechanics:

Figure 1 LV mechanical parameter orientation. LV segmentation and myocardial mechanical parameters analyzed by VVI. LAX, Long-axis; SAX, short-axis.

STRAIN RATE e STRAIN (ε) e

TWISTING

(-t)

Le FIBRE MIOCARDICHE

Subendocardio: longitudinali

Midwall: circonferenziali

Subepicardio: longitudinali (radiali)

L'EF valuta solo l'accorciamento radiale !

The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans

Marcus Carlsson, Martin Ugander, Einar Heiberg, and Hakan Arheden Department of Clinical Physiology, Lund University Hospital, Lund, Sweden - AM J PHYSIOL HEART CIRC 2007

MOVIMENTO SISTOLICO

Dallo STRAIN RATE allo STRAIN

STRAIN

SPECKLE TRACKING

• The random distribution of the speckles ensures that each region of the myocardium has an unique pattern, a fingerprint.

•The speckles follow the motion of the myocardium so when the myocardium moves from one frame to the next, the position of this fingerprint will shift slightly, remaining fairly constant.

•Thus, if a region (*kernel*) is defined in one frame, a search algorithm will be able to recognise the lie sized and shaped area with the most similar speckle pattern in the next frame, within a defined search area and hence, to find the new position of the kernel

2D STRAIN: AFI

-6

2D STRAIN: AFI

(1)

2D STRAIN: AFI - BULL'S EYE

<u>GLPS</u> Global Longitudinal Peak Systolic

V.N. < -16%

2D STRAIN ed INFARTO

† 🔄 🔿

Radial strain, Longitudinal strain, Circumferential strain and Area strain.

4D STRAIN

•

Study	Echocar diograph method	- c Cancer type	n	Age, yrs	Female %	Treatment	Echocardiography timing	Pre-echo	Post-echo	Cardiotoxicity Rate (%)	Thresholds for Toxicity Prediction	Vendor, Reproducibility
Mornos <i>et al.</i> (2013) ²³⁴	STE	Breast lymphoma, ALL, AML, osteosarcom	74 & 37 controls a	51 ±11	58	Anthracyclines	Pre, post, and 6, 12, 24 and 52 weeks	GLS -21.2 ± 2.5% GRS 47.8 ± 5.3%	GLS -19.0 ± 2.4% GRS 41.1 ± 5.4% (6 weeks)	13	ΔGLS 2.8% (13.1% relative), sensitivity 79% and specificity 73% at 6 weeks for toxicity at 24 -52 weeks	GE, intraobserver ICC for GLS 0.95, interobserver 0.91
Negishi <i>et al.</i> (2013) ¹⁵⁵	STE	Breast	81	50 ± 11	100	Trastuzumab, doxorubicin 46% RT 62%	Pre-trastuzumab, and 6 and 12 months later	GLS -20.7 \pm 2.6% GLSR -1.17 \pm 0.24/s GLSR-E 1.36 \pm 0.28/s	GLS -18.3 \pm 2.1% GLSR -1.00 \pm 0.15/s GLSR-E 1.20 \pm 0.28/s (at 6 months in patients who later had toxicity)	30 5	GLS change ≥11% between pre- treatment and 6 months, sensitivity 65%, spec 95% or absolute GLS >-20.5 at 6 months, sensitivity 96%, spec 66% for toxicity at 12 months	GE, intraobserver ICC (95% CI) for GLS 0.85 (0.54%- 0.96%), GSLR 0.91 (0.70-0.98/s), GLSR-E 0.90 (0.66-0.97/s), Interobserver 0.71 (0.23%-0.92%), 0.85 (0.28-0.97/s), 0.87 (0.56-0.97/s)
Baratta <i>et al.</i> (2013) ²³⁵	STE	Breast	36	47 ± 16	58	Doxorubicin 58% trastuzumab 22%	Pre- and 2,3,4, and 6 months after start of therapy	GLS -20.3 \pm 2.7% GRS 53.1 \pm 4%	GLS -18.9 ± 2.5% (3 months) GRS 50 ± 3.9% (4 months)	3 19.4	$\begin{array}{l} \text{GLS fall} \geq 15\% \text{ at } 3\\ \text{months, sensitivity}\\ 86\%, \text{spec } 86\%.\\ \text{GRS fall} \geq 10\% \text{ at}\\ 4 \text{ months,}\\ \text{sensitivity } 86\%\\ \text{spec } 69\% \end{array}$	GE, mean (SD) absolute difference inter/ intraobserver GLS 0.6 (1.4%)/0.2 (1/ 1%), GRS 3.4 (7.1%)/3.2 (6.6%)
Sawaya et al. (2012) ¹⁶⁰	STE	Breast	81	50 ± 10	100	Doxorubicin, epirubicin, trastuzumab, RT 60%	Pre-anthracycline and at 3, 6, 9, 12, and 15 months	GLS -21 ± 2% GRS 53 ± 15% s GCS -18 ± 4%	GLS -19 ± 2% GRS 50 ± 17% GCS -16 ± 4% at 3 months	32	Absolute GLS < -19% at 3 months, sensitivity 74%, spec 73% for subsequent toxicity	GE, same variability as in previous study (153)
Sawaya <i>et al.</i> (2011) ¹⁵³	STE	Breast	43	49 ± 10	100	Doxorubicin, epirubicin, trastuzumab, RT 11.6%	Pre-anthracycline and at 3 and 6 months	GLS -20.5 \pm 2.2% GCS 18 \pm 4%	$ \begin{array}{l} GLS \ \text{-19.3} \pm 2.4\% \\ GCS \ \text{15} \pm 4\% \end{array} $	21	GLS fall > 10% at 3 months, sensitivity 78%, spec 79% for toxicity at 6 months	GE, intraobserver as absolute mean error (SD) GLS -0.14 (1.1%), interobserver 0.5 (1.5%)
Fallah-Rad et al. (2011) ¹⁵⁶	STE	Breast	42	47 ± 9	100	Epirubicin, doxorubicin, trastuzumab, RT 98%	Pre-anthracycline, Pre-trastuzumab and at 3, 6, 9, and 12 months	GLS -19.8 ± 1.8% GLS 41.4 ± 15.2%	GLS -16.4 ± 1.1% GRS 34.5 ± 15.2% (3 months into trastuzumab)	24	Absolute GLS fall of 2.0%, sensitivity 79%, spec 82%. Absolute GRS fall of 0.8%, sensitivity 86%, spec 81% for subsequent toxicity	GE, intraobserver as ICC (COV) GLS 0.94 (3.5%), GRS 0.91 (3.2%). Interobserver 0.90 (5.2%), 0.82 (5.4%)
Hare <i>et al.</i> (2009) ¹⁶²	TDI and STE	I Breast	35	51 ± 8	100	Doxorubicin, epirubicin, trastuzumab, RT 77%	Pre- and/or post- anthracycline and at 3-month	STE GLSR -1.30 \pm 0.21/s STE RSR 2.02 \pm 0.61/s	$\begin{array}{l} \text{STE GLSR -1.24} \pm \\ \text{0.18/s} \text{ (by 3} \\ \text{months)} \text{ STE RSR} \\ \text{1.75} \pm \text{0.41/s} \text{ (by} \end{array}$	14	A >1 SD drop in GLSR (toxicity at mean follow-up of 22 ± 6 months)	GE, intra/ interobserver as ICC for 2D GLS 0.94/0.91, GLSR

Table 4 Clinical studies using STE-derived deformation indices during or early after cancer treatment

Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: A comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months

Paul W. Stoodley^a, David A.B. Richards^{b,c}, Anita Boyd^c, Rina Hui^{d,f}, Paul R. Harnett^{d,f}, Steven R. Meikle^{a,e}, Karen Byth^f, Kirsty Stuart^{d,f}, Jillian L. Clarke^a, Liza Thomas^{b,c,f,*}

^a Faculty of Health Science, University of Sydney, Lidcombe, NSW, Australia

^b Department of Cardiology, Liverpool Hospital, Liverpool, NSW 2170, Australia

^c Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

^d Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia

^e Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia

^f Faculty of Medicine, University of Sydney, Sydney, NSW, Australia

CONCLUSIONI:

- non significative alterazioni dell'EF
- riduzione 2D-strain già entro 7 gg dopo Anth
- danno non uniforme (apice risparmiato)
- disfunzione non permanente se basse dosi (258 ± 75 mg/m²)
- persistente riduzione GLS (< -17.2%) se alte dosi (318 ± 115 mg/m²)

Left Ventricular Endocardial Dysfunction in Patients with Preserved Ejection Fraction after Receiving Anthracycline

Tatsuya Miyoshi, M.D., * Hidekazu Tanaka, M.D., Ph.D., * Akihiro Kaneko, M.D., Ph.D., * Kazuhiro Tatsumi, M.D., Ph.D., * Kensuke Matsumoto, M.D., * Hironobu Minami, M.D., D.Med.Sci., † Hiroya Kawai, M.D., Ph.D., * and Ken-ichi Hirata, M.D., Ph.D. *

*Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; and †Division of Medical Oncology and Hematology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Background: Anthracycline chemotherapy generates progressive dose-dependent left ventricular (LV) dysfunction associated with a poor prognosis. Early detection of minor LV myocardial dysfunction caused by the cardiotoxicity of anthracycline is thus important for predicting global LV dysfunction. Methods: Fifty patients with preserved ejection fraction (all \geq 55%) after receiving anthracycline chemotherapy were recruited for this study. Two-dimensional speckle tracking was used to assess global radial and circumferential strains from mid-LV short-axis views and global longitudinal strain from the apical four- and two-chamber view as peak global strain curves. Three-dimensional (3D) radial, circumferential, and longitudinal myocardial function was guantified as a peak global strain curve using 3D speckle tracking from all 16 LV segments. 3D speckle tracking imaging was used to evaluate LV endocardial area change ratio (area strain) quantified as peak global area strain curve (3D-GAS) to determine LV endocardial function. Twenty age-, gender-, and EF-matched normal volunteers were studied for comparisons. Results: Only 3D-GAS and peak 3D global circumferential strains of the anthracycline group were significantly worse than those of the control group (-43.3 \pm 3.1 vs. -45.8 \pm 4.3% and $-31.6 \pm 3.5\%$ vs. $-34.4 \pm 4.2\%$, respectively; P = 0.008, P = 0.004) even though global LV systolic and diastolic functions were similar. 3D-GAS correlated significantly with the cumulative doxorubicin dose (r = 0.316, P = 0.026). It was noteworthy that multivariate analysis showed only 3D-GAS $(\beta = 0.323, P = 0.025)$ was independently associated with cumulative doxorubicin dose. Conclusions: Three-dimensional speckle tracking area strain was found useful for early detection of minor LV endocardial dysfunction associated with the use of anthracycline, and may thus prove to be clinically useful for predicting global LV dysfunction. (Echocardiography 2014;31:848–857)

Changes in Left Ventricular Longitudinal Strain with Anthracycline Chemotherapy in Adolescents Precede Subsequent Decreased Left Ventricular Ejection Fraction

Joseph T. Poterucha, DO, Shelby Kutty, MD, Rebecca K. Lindquist, RDCS, Ling Li, MD, PhD, and Benjamin W. Eidem, MD, *Omaha, Nebraska; Rochester, Minnesota*

Background: Pediatric cancer survivors who have been exposed to anthracycline (ANT) chemotherapy are an ever increasing population at risk for premature cardiac disease. Studies have shown that ANT is associated with impaired left ventricular (LV) myocardial deformation, but this has not been shown to be associated with traditional echocardiographic measures of LV systolic dysfunction. The aim of this study was to test the hypothesis that changes in LV longitudinal peak systolic strain (LPSS) would correlate with parameters of LV systolic dysfunction.

Methods: This study included 19 prospectively enrolled pediatric patients receiving ANT (mean dose, $296 \pm 103 \text{ mg/m}^2$) and 19 controls matched for age, gender, and body surface area. For ANT patients, echocardiography was performed at baseline, mid, and final treatment points (0, 4, and 8 months). Standard echocardiographic parameters and two-dimensional speckle tracking-derived longitudinal strain parameters were obtained and compared with baseline measurements in controls. Associations between changes in LV global LPSS and standard echocardiographic indices were explored.

Results: Within the ANT group, the change in LV global LPSS showed a significant decrease compared with baseline at 4 months (8.7 ± 0.2%, *P* = .033) and 8 months (9.2 ± 0.3%, *P* = .015), while the percentage change in ejection fraction (EF) showed a statistically significant decrease at 8 months ($4.3 \pm 0.1\%$, *P* = .044). LV global LPSS was decreased in the ANT group compared with controls at 4 months ($18.1 \pm 2.5\%$ vs 20.5 ± 1.5%, *P* = .011) and 8 months ($18.1 \pm 2.8\%$, *P* = .032). Segmental changes in mid and apical LV LPSS average were significantly correlated with change in EF (mid: *r* = -0.49, β = -0.645, *P* = 0.039; apical: *r* = -0.48, β = -0.4126, *P* = .046).

Conclusions: In adolescents who receive ANT therapy, changes in two-dimensional LV global LPSS precede decreases in EF, and segmental changes in mid and apical LV LPSS suggest an increased likelihood that depressed LV EF will be observed later in follow-up. Two-dimensional speckle tracking–derived LV LPSS is potentially useful in the serial clinical monitoring of ANT cardiotoxicity. (J Am Soc Echocardiogr 2012;25:733-40.)

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 63, No. 25, 2014 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2014.01.073

CrossMark

STATE-OF-THE-ART PAPERS

Use of Myocardial Strain Imaging by Echocardiography for the Early Detection of Cardiotoxicity in Patients During and After Cancer Chemotherapy

A Systematic Review

Paaladinesh Thavendiranathan, MD,* Frédéric Poulin, MD,* Ki-Dong Lim, MD,*

Miglior predittore CTX = Global Longitudinal Strain S.T.: ↓10-15%

small trials in the research setting. In this systematic review of the current literature, we describe echocardiographic myocardial deformation parameters in 1,504 patients during or after cancer chemotherapy for 3 clinically-relevant scenarios. The systematic review was performed following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the EMBASE (1974 to November 2013) and MEDLINE (1946 to November 2013) databases. All studies of early myocardial changes with chemotherapy demonstrate that alterations of myocardial deformation precede significant change in left ventricular ejection fraction (LVEF). Using tissue Doppler-based strain imaging, peak systolic longitudinal strain rate has most consistently detected early myocardial changes during therapy, whereas with speckle tracking echocardiography (STE), peak systolic global longitudinal strain (GLS) appears to be the best measure. A 10% to 15% early reduction in GLS by STE during therapy appears to be the most useful parameter for the prediction of cardiotoxicity, defined as a drop in LVEF or heart failure. In late survivors of cancer, measures of global radial and circumferential strain are consistently abnormal, even in the context of normal LVEF, but their clinical value in predicting subsequent ventricular dysfunction or heart failure has not been explored. Thus, this systematic review confirms the value of echocardiographic myocardial deformation parameters for the early detection of myocardial changes and prediction of cardiotoxicity in patients receiving cancer therapy. (J Am Coll Cardiol 2014;63:2751-68) © 2014 by the American College of Cardiology Foundation

Available online at www.sciencedirect.com

ScienceDirect

www.onlinepcd.com

Cardio-Oncology: Role of Echocardiography

Hector R. Villarraga*, Joerg Herrmann, Vuyisile T. Nkomo

Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States

ARTICLEINFO

Keywords: Cardio-oncology Strain Radiotherapy Breast cancer Lymphoma

ABSTRACT

Current therapies for cancer have improved life expectancy of patients. Breast cancer and lymphoma survivors in up to 26% of cases can develop complications as a consequence of the chemotherapeutic and radiotherapeutic treatments. Echocardiography is a noninvasive method that can in all stages of cancer treatment perform a comprehensive evaluation and detect coronary, myocardial, valve and pericardial disease complications secondary to the therapeutic regimen used (radiotherapy and/or chemotherapy). Three-dimensional echocardiography derived left ventricular ejection fraction (LVEF) has an excellent correlation with cardiac magnetic resonance imaging and can be used to monitor LVEF; 2-dimensional speckle tracking echocardiography (2D-STE) derived strain and strain rate can detect changes in myocardial mechanics before changes in LVEF occur and can predict a future decrease in ejection fraction to less than 50% or of greater than 10% indicative of cardiotoxicity. Echocardiography should be used as the method of choice to evaluate serial changes in heart function, detect late side effects of treatment, and to identify patients at risk of a future decrease in LVEF.

© 2014 Elsevier Inc. All rights reserved.

Modified from: Xu Y, Hermann J, Pellikka PA, Ansell SM, Cha S, Villarraga HR. Can early changes in 2-dimensional speckle tracking echocardiography predict a future decrease in left ventricular ejection fraction in lymphoma patients undergoing anthracycline chemotherapy? JASE. 2013; 26:B52

STRAIN CUT-OFF for INTERVENDORS

Table 1 – Values of strain and systolic strain rate (S and SRs) with standard deviation (SD).							
	Strain %	Longitudinal SRs s ⁻¹	Circumferential Strain %	Circumferential SRs s ⁻¹	Radial Strain	Radial SRs s ⁻¹	
GE^{40}	-18.6 ± 5.1		-22.9 ± 4.4		54.6 ± 12.6		
VVI ³⁶	-17.3 ± 2.5	-1.0 ± 0.1	-21.9 ± 4.0	1.3 ± 0.3	44.8 ± 21.7	2.3 ± 0.7	
TOMTEC ³⁸	-16.1 ± 4.9		-22.3 ± 7.4		30.4 ± 13.5		
(30FPS)							
Toshiba ⁴¹	-19.9 ± 2.4		-30.5 ± 3.8		51.4 ± 8.0		
Philips ⁴¹	-18.9 ± 2.5		-22.2 ± 3.2		36.3 ± 8.2		
Abbreviation: SRs: systolic strain rate.							

EXPERT CONSENSUS STATEMENT

Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging

Juan Carlos Plana, MD, FASE, Chair, Maurizio Galderisi, MD, FESC, Co-Chair, Ana Barac, MD, PhD, Michael S. Ewer, MD, JD, Bonnie Ky, MD, FASE, Marielle Scherrer-Crosbie, MD, PhD, FASE, Javier Ganame, MD, PhD, FASE, Igal A. Sebag, MD, FASE, Deborah A. Agler, RCT, RDCS, FASE, Luigi P. Badano, MD, PhD, FESC, Jose Banchs, MD, FASE, Daniela Cardinale, MD, PhD, FESC,
Joseph Carver, MD, Manuel Cerqueira, MD, Jeanne M. DeCara, MD, FASE, Thor Edvardsen, MD, PhD, FESC, Scott D. Flamm, MD, MBA, Thomas Force, MD, Brian P. Griffin, MD, Guy Jerusalem, MD, PhD, Jennifer E. Liu, MD, FASE, Andreia Magalhães, MD, Thomas Marwick, MBBS, PhD, MPH, Liza Y. Sanchez, RCS, FASE, Rosa Sicari, MD, PhD, FESC, Hector R. Villarraga, MD, FASE, and Patrizio Lancellotti, MD, PhD, FESC, *Cleveland, Ohio; Naples, Padua, Milan, and Pisa, Italy; Washington, District of Columbia; Houston, Texas; Philadelphia, Pennsylvania; Boston, Massachusetts; Hamilton, Ontario and Montreal, Quebec, Canada; Chicago, Illinois; Oslo, Norway; Liege, Belgium; New York, New York; Lisbon, Portugal; Hobart, Australia; Rochester, Minnesota*

	Туре І	Type II
Characteristic agent	Doxorubicin	Trastuzumab
Clinical course and typical response to antiremodeling therapy (β-blockers, ACE inhibitors)	May stabilize, but underlying damage appears to be permanent and irreversible; recurrence in months or years may be related to sequential cardiac stress	High likelihood of recovery (to or near baseline cardiac status) in 2–4 months after interruption (reversible)
Dose effects	Cumulative, dose related	Not dose related
Effect of rechallenge	High probability of recurrent dysfunction that is progressive; may result in intractable heart failure or death	Increasing evidence for the relative safety of rechallenge (additional data needed)
Ultrastructure	Vacuoles; myofibrillar disarray and dropout; necrosis (changes resolve over time)	No apparent ultra structural abnormalities (though not thoroughly studied)

Cancer Therapeutics-Related Cardiac Dysfunction

define CTRCD as a decrease in the LVEF of >10 percentage points, to a value <53% (normal reference value for two-dimensional (2D) echo- cardiography (2DE)

- Reversible: to within 5 percentage points of baseline
- Partially reversible: improved by ≥10 percentage points from the nadir but remaining >5 percentage points below baseline

Dopo 2-3 sett

- Irreversible: improved by <10 percentage points from the nadir and remaining >5 percentage points below baseline
- Indeterminate: patient not available for re-evaluation

- <u>Echocardiography</u> is the <u>method of choice</u> for the evaluation of patients before, during, and after cancer therapy.
- <u>Accurate calculation of LVEF</u> should be done with the <u>best</u> <u>method available</u> in the echo laboratory (<u>ideally 3DE</u>).
- When using 2DE, the **modified biplane Simpson's technique** is the method of choice.
- LVEF should be combined with the calculation of <u>wall motion</u> <u>score index</u>.
- In the absence of <u>global longitudinal strain (GLS) by STE</u>, quantification of LV longitudinal function using mitral annular displacement by M-mode echocardiography (<u>MAPSE</u>) and/or peak systolic velocity (<u>S wave</u>) of the mitral annulus by pulsed-wave <u>DTI</u> is recommended.
- LVEF assessed by 2DE often fails to detect small changes in LV contractility.
DIASTOLIC FUNCTION

- Use of the <u>E/E' ratio</u> remains <u>questionable</u> in the oncologic setting, as E and E' velocities <u>fluctuation</u> in these patients could be the consequence of <u>changes in loading conditions</u> as a result of side effects associated with the chemotherapy (nausea, vomiting, and diarrhea)
- a <u>conventional assessment of LV diastolic function</u>, including grading of diastolic function and noninvasive estimation of LV filling pressures, should be added to the assessment of LV systolic function, per ASE and EAE recommendations

- A quantitative assessment of <u>**RV** chamber</u> and function should be performed because of possible RV involvement.
- <u>Cardiac valves</u> should be <u>carefully evaluated</u> in patients undergoing chemotherapy.
- Patients with baseline or **changing valvular findings** during chemotherapy should undergo **careful reevaluation** of valve structure and function on serial echocardiography during and after the course of their treatment.
- **Pericardial disease** in oncologic patients can be associated with cardiac **metastasis** or be a **consequence** of chemotherapy and/or radiotherapy.
- **Pericardial effusion should be quantified and graded** according to standard methods.
- Echocardiographic and Doppler signs of **cardiac tamponade** should be investigated,

STRAIN

- Myocardial deformation (strain) can be measured using DTI or 2D STE. The latter is favored because of a lack of angle dependency.
- GLS is the optimal parameter of deformation for the early detection of subclinical LV dysfunction.
- Ideally, the measurements during chemotherapy should be compared with the baseline value. In patients with available baseline strain measurements, a relative percentage reduction of GLS of <8% from baseline appears not to be meaningful, and those >15% from baseline are very likely to be abnormal.
- When applying STE for the longitudinal follow-up of patients with cancer, the same vendor-specific ultrasound machine should be used.

CASISTICA MOLINETTE

- 73 pazienti ♀
- carcinoma mammario

 ecocardiogramma 2D 3D Doppler prima della CHT e al F.U. 9 mesi

valutazione EF e nuovi indici s-d

S.C. Cardiologia 2 Marra : M.Giorgi, G. Alunni, A. Fava, F. Astegiano COES Ciuffreda : M. Donadio, M. Mistrangelo

VARIABILITÀ INTEROPERATORE

EF	t -	p value
2D	2,07	0,04
3D Triplano	2,04	0,04
3D Full	2,1	0,03

L' ECHO 3D full-volume si è dimostrata la metodica con maggior riproducibilità

RISULTATI

 GRUPPO 1A: 13 pazienti (18%) senza alterazioni dell'EF, né dei nuovi indici

• **GRUPPO 1B**: 17 pazienti (23%) con EF inalterata ed alterazioni ab initio dei nuovi indici, non progredite al follow-up

 GRUPPO 2: 40 pazienti (55%) con EF inalterata ed alterazioni dei nuovi indici al follow-up

 GRUPPO 3: 3 pazienti (4%) con alterazioni significative dell'EF

✓ INDICI SISTOLICI:

- <u>2D STRAIN LONGITUDINALE (AFI)</u>
 - alterazioni precoci
 - variazioni più significative
- <u>4D STRAIN</u>
 - riduzione di **tutte** le componenti (long, rad, circ)
 - più marcata la riduzione radiale
- **CINESI SEGMENTARIA (WMSI)**
 - tardivo e con minor frequenza
 - segmenti settali coinvolti più precocemente

✓ INDICI DIASTOLICI

- variazioni precoci di E'/A', del rapporto E/E' e dell'onda E

INDICI SISTODIASTOLICI (IMP / TEI index)

- minor variazione nel tempo (parametro tardivo)

ANALISI della VARIANZA

MANAGEMENT

Oncologia Ematologia

Cardiologia osp/amb SPOKE

- Molinette
- Mauriziano
- GiovanniBosco
- Candiolo
- Orbassano

BASTA DIRE MILANO SANREMO ED È GIÀ EMOZIONE

VALUTAZIONE BASALE FRC, anamnesi, EO, TnT, ECG, ECHO

RIVALUTAZIONE PERIODICA

Troponina prima di ogni ciclo CHT

Alterazioni Troponina

CENTRO RIFERIMENTO

Molinette, Mauriziano, Candiolo, S.Giovanni Bosco

ECHO AVANZATO

ALTERATO

NORMALE

RIVALUTAZIONE CARDIOPROTEZIONE

ECHO ogni 6 mesi

F.U. (ECHO, MRI)

STEP 1 - VALUTAZIONE BASALE

Anamnesi - Individuazione dei FRC Visita / esame obbiettivo

Profilo biochimico completo (funzionalità renale ed epatica, assetto lipidico, HbA1C)

ECG Troponina ECHO

Ş

0

8

0

MINIMUM DATA SET ECHO 1°

- Diametri e spessori M-mode (Teicholz) NO FS!
- FUNZIONE SISTOLICA: EF (v.n. > 55%)
- FUNZIONE DIASTOLICA IMP
- Ventricolo destro: TAPSE (>18 mm), S2 (>12 cm/s -TDI)
- Area/Volumetrie atriali: area < 18 cm², AS < 28 ml/m²
- Aorta ascendente (inner-to-inner edge)
- Vena cava (v.n. < 20 mm, normocollabente)
- Apparati valvolari e flussimetria Doppler
- Stima PAPs (da IT o AcT)
- Pericardio: misura e localizzazione eventuale versamento

FUNZIONE SISTOLICA

- M-mode (Teicholz: spessori e diametri td e ts)
- Frazione d'eiezione: SIMPSON BIPLANO (v.n. > 55%)
- MAPSE (v.n. > 12 mm)
- dP/dt: v.n. > 1200 mmHg/s (quando fattibile per IM)
- Cinesi segmentaria: WMSI
- Se disponibili:
- Onda <mark>S2</mark> al TDI (v.n. ≥ 8 cm/s)
- 3D-ECHO (triplano e full-volume)
- STRAIN (GLPSavg = Global Longitudinal Peak Systolic):
 - ⇒ 2D-strain longitudinale: v.n. < -18% (b.l. < -16%)</p>

RIVALUTAZIONE ECHO PERIODICA

•FUNZIONE SISTOLICA

CINESI SEGMENTARIA

•FUNZIONE DIASTOLICA

•FOCUSED ECHO: mirato alla rivalutazione di eventuali parametri alterati di base (es. versamento)

WALL DYNAMICS (STRAIN) e DIASTOLE

NORMALE ALTERATO

NORMALE

No risk factors

Evaluation	BASELI NE	3 months	6 months	12 months	Every 6 months	Every 12 months
Physical examination [§]	Х	Х	Х	Х	Х	
LDL, HDL, TAG	Х	Х	Х	Х		Х
Uric acid, creatinine, K, Mg, glucose	Х	Х	Х	Х		Х
BP	Х	Х	Х	Х	Х	
ECG	X (X if clinically indicated)					
Echocardiogram	X (X if clinically indicated)					

§ Inclusi polsi periferici

1-3 Risk factors

Evaluation	BASELI NE	3 months	6 months	12 months	Every 6 months	Every 12 months
Physical examination ⁺	Х	Х	Х	Х	Х	
LDL, HDL, TAG	Х	Х	Х	Х		Х
Uric acid, creatinine, K, Mg, glucose	Х	Х	Х	Х		Х
BP	Х	Х	Х	Х	Х	
ECG	Х			Х		Х
Echocardiogram	X (X if clinically indicated)					
HbA1c (in pts with DM)	Х	Х	Х	Х	Х	
Edinburgh Claudication Questionnaire ⁺	Х			Х		X (24 mesi)

>3 Risk factors

Evaluation	BASELI NE	3 months	6 months	12 months	Every 6 months	Every 12 months
Physical examination [*]	Х	Х	Х	Х	Х	
LDL, HDL, TAG	Х	Х	Х	Х		Х
Uric acid, creatinine, K, Mg, glucose	Х	Х	Х	Х		Х
BP	Х	Х	Х	Х	Х	
ECG*	Х		Х	Х	Х	
Echocardiogram*	X (X if clinically indicated)					
HbA1c (in pts with DM)	Х	Х	Х	Х	Х	
Edinburgh Claudication Questionnaire ^{+*}	Х			Х		Х
Carotid ultrasound (Doppler) scan [†] *	Х			Х		Х

[‡] Physical examination should include: peripheral pulses

+ ABI if positive Edinburgh; Vascular surgeon referral if ABI < 0.9

⁺ Vascular surgeon referral if positive Carotid ultrasound (Doppler) scan

 \ast Within the context of a referral to a cardiovascular specialist

RIDUZIONE EF e CARDIOPROTEZIONE

- EF > 50% e ↓ EF ≥ 10 p.% rispetto al basale: proseguire CHT (antracicline) o transtuzumab
- EF < 50% : rivalutazione dopo 3 settimane --> se confermata, sospensione trattamento
- EF < 40%: stop CHT e considerare regimi CHT alternativi

In tutti iniziare <u>CARDIOPROTEZIONE</u> con: - ACEinibitori (*ramipril*) e/o sartani (*val-,telmisartan*) - Beta-bloccanti (*bisoprololo, carvedilolo*) - Ivabradina? - Cardioxane? - Ranolazina?

TERMINE CHT e F.U. 6 MESI: VISITA, ECG, ECHO

F.U. 1 ANNO: VISITA + ECG; *ECHO se indicato*

F.U. 5 ANNI: VISITA, ECG, ECHO

F.U. 10 ANNI: VISITA, ECG, ECHO

FOLLOW UP: CAVEAT

1) Per TUTTI (cardiologi, oncologi, internisti, mdf): variazioni dello stato clinico

-anamnesi: *comparsa di <u>sintomi</u>*

-esame obiettivo

-ECG: aritmie, BBS

2) ECOCARDIOGRAFISTI: "minimum data set", in particolare alterazioni diastole, EF, strain

FOLLOW UP

• A chi? Tutti i Pts, solo alto rischio, giovani?

• Quando e con che cadenza? 6 m, ogni 1-3-5 aa?

• Chi? Oncologo, cardiologo, internista, medico di famiglia?

• **Dove?** Centralizzato o periferico?

• **Come?** Solo visita, + markers, +ECG, + ECHO?

- Controlli troppo assidui in Pts "guariti" (ansia)
- Rischio di "drop out" dei Pts (giovani)
- Sottovalutazione del problema CTX
- Sovraccarico degli Echo-Lab
- Importanza della precisione delle misure

Cardiologo ospedaliero, Cardiologo territoriale, Oncologo, Ematologo, Internista, Medico di fam<mark>igl</mark>ia - Paziente

PATTO di COLLABORAZIONE Tra MEDICO e PAZIENTE

Grazie per l'attenzione

Grazie per l'attenzione!