HRT and Breast cancer: are all the treatements alike?

In contrast, in this **French study**, where **progesterone or dydrogesterone are used**, **no evidence of increased risk with these formulations was found**

Route of administration

Different

progestins

Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study

80.377 postmenopausal women						
2.354 breast cancers	Follow-up 8.1 years					
Type of HRT	R.R. of breast cancer	The <u>route</u> of administration of				
Estrogen + progesterone	1.00 (0.83-1.22)	the estrogens did not have a				
Estrogen + dydrogesterone	1.16 (0.94-1.43)	significant effect on the association between HRT use and breast cancer				
Estrogen alone	1.29 (1.02-1.65)	risk				
Estrogen + other progestagens	1.69 (1.50-1.91)					

Fournier A et al. Breast Cancer Res Treat 2008

Different progestins

A continuous publication, open access, peer-reviewed journal

Drugs in Context 2020; 9: 2020-10-1.

REVIEW

Progestogens as a component of menopausal hormone therapy: the right molecule makes the difference

John C Stevenson MB BS, FRCP, FESC, MFSEM¹, Serge Rozenberg MD, PhD², Silvia Maffei MD³, Christian Egarter Prof Dr Med⁴, Petra Stute Prof Dr Med⁵, Thomas Römer Prof Dr Med⁶

High-density breast tissue

High-density breast tissue is associated with an increased risk of breast cancer.^{47,48} Progesterone in combination with estradiol appears less likely than other progestogens to increase mammographic density.³⁰ Evidence suggesting that breast cancer risk is lower with micronized progesterone or dydrogesterone than with other progestogens^{8,26–28} supports their use in women with high breast density concerns. Tibolone has been shown to increase breast density to a lesser extent than estradiol/norethisterone acetate in postmenopausal women during 6 months of treatment.⁴⁹

Tissue-Selective Estrogen Complexes: TSECs

Rationale for Development of new class of Tissue-Selective Estrogen Complexes (TSECs)

TSEC

The partnering of a SERM with one or more estrogens to achieve a preclinical profile based on the blended tissueselective activities of it components TSEC CE 0.45 mg + Bazedoxifene 20 mg

Available in Italy from 2015

The goal was to combine the established efficacy of estrogens with a SERM to protect against effects of estrogens on the breast and the endometrium

SERMs, Selective Estrogen Receptor Modulators; TSECs, Tissue Selective Estrogen Complexes

Komm BS.A. Reprod Sci.2008 ;15(10):984-92

Overview of the global SMART clinical development program for CE/BZA

Clinical studies conducted worldwide in more than 7500 women^{1-5,a} Studies assessed both CE 0.45 mg/BZA 20 mg and CE 0.625 mg/BZA 20 mg

SMART, Selective estrogens, Menopause, And Response to Therapy; BMD, bone mineral density. ^aIncludes additional pilot dose-finding study 403.

4 treatment groups (N=1061) BZA 20 mg/CE 0.45 mg BZA 20 mg/CE 0.625 mg CE 0.45 mg/MPA 1.5 mg Placebo

The effects of bazedoxifene on mammographic breast density in postmenopausal women with osteoporosis

Jennifer A. Harvey, MD,¹ Mary K. Holm, MD,² Radhika Ranganath, MD,³ Paul A. Guse, PhD,³ Edward A. Trott, MD,³ and Eileen Helzner, MD³

BZA for 2 years did not affect age related changes in breast density

TOS E CARCINOMA DEL COLON

Colorectal cancer in women: hormone replacement therapy and chemoprevention

E. L. Barnes and M. D. Long

CLIMACTERIC 2012;15:250-255

Table 1	Effect size estimates for reduction of colorectal cancer risk
with estro	gen and progestin-containing hormone replacement therapy
in observa	tional studies since the Women's Health Initiative

			95% confidence
Author	Date	Effect estimate	interval
Newcomb et al.27	2007	odds ratio 0.6	0.5-0.9
Delellis Henderson <i>et al.</i> ²⁸	2010	relative risk 0.64	0.51-0.8
Johnson et al. ²⁹	2009	relative risk 0.78	0.60-1.02
Rennert et al.30	2009	odds ratio 0.67	0.51-0.89
Long et al.31	2010	odds ratio 0.52	0.38-0.72

A statistically significant reduction in colorectal cancer risk in current HRT users with the most significant reduction in risk in those patients who had used HRT for greater than 5 years

WHI trial -Estrogen only

Outcomes	Hazard ratio	Adjusted 95% CI				
Cardiovascular disease						
CHD	0.91	0.72-1.15				
Stroke	1.39	0.97-1.99				
Venous thromboembolic disease	1.33	0.86-2.08				
Cancer						
Invasive breast	0.77	0.57-1.06				
Colorectal	1.08	0.63-1.86				
Death	1.08	0.79-1.46				
Fractures Hip	0.61	0.33-1.11				
Global index	1.01 JAMA 2004: 29189-70.1-4712					

The Women's Health Initiative Hormone Therapy Trials: Update and Overview of Health Outcomes During the Intervention and Post-Stopping Phases

13 years of follow-up of HRT in the WHI study

CEE+MPA Trial

JoAnn E. Manson Dr., MD, DrPH, Dr. Rowan T. Chlebowski, MD, PhD, Dr. Marcia L.

JAMA. 2013 October 2; 310(13): 1353-1368.

CEE Alone Trial

	Active	Placebo	Diff per				Active	Placebo	Diff per			
Primary Endpoints	N(%*)	N(%*)	10K pys*	HR	95%CI	P	N(%*)	N(%*)	10K pys*	HR	95%CI	P
Coronary heart disease	487(0.48)	430(0.45)	+3	1.09	(0.96, 1.24)	0.19	363(0.60)	393(0.63)	-4	0.94	(0.82, 1.09)	0.43
Invasive breast cancer	434(0.43)	323(0.34)	+9	1.28	(1.11, 1.48)	< 0.001	168(0.28)	216(0.35)	-7	0.79	(0.65, 0.97)	0.02
Other Endpoints in the Global Index												
Stroke	376(0.37)	311(0.32)	+5	1.16	(1.00, 1.35)	0.06	278(0.46)	253(0.41)	+5	1.15	(0.97, 1.37)	0.10
Pulmonary embolism	172(0.17)	128(0.13)	+4	1.26	(1.00, 1.59)	0.05	107(0.17)	96(0.15)	+2	1.15	(0.87, 1.51)	0.34
Colorectal cancer	126(0.12)	150(0.16)		0.80	(0.63, 1.01)	0.06	100(0.16)	90(0.14)		1.13	(0.85, 1.51)	0.39

In post intervention and cumulative FU: **Poststopping and cumulative HRs were neutral in both trials**

HRT and Non-gynecologic Tumours: CRC

ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium.

During colon cancer progression, $ER\beta$ expression is lost

- Estrogens may exert an anti-tumor effect through:
 - selective activation of pro-apoptotic signaling mediated by ERβ,
 - 2. inhibition of inflammatory signals
 - 3. modulation of the tumor
 - microenvironment.

Caiazza, Francesco et al. Frontiers in oncology vol. 5 19. 2 Feb. 2015